A317393 Positive integers that have exactly three representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
43, 61, 91, 111, 121, 124, 171, 184, 187, 205, 221, 231, 256, 265, 267, 268, 274, 277, 281, 283, 291, 311, 323, 326, 331, 337, 371, 373, 375, 379, 386, 411, 412, 427, 428, 435, 443, 451, 456, 457, 471, 474, 475, 482, 491, 494, 505, 507, 508, 511, 519, 521, 523
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
b:= proc(n, s) option remember; local p, r; if n=1 then 1 else r:=0; for p in numtheory[factorset](n-1) minus s while r<4 do r:= r+b((n-1)/p, s union {p}) od; `if`(r<4, r, 4) fi end: a:= proc(n) option remember; local k; for k from `if`(n=1, 1, 1+a(n-1)) while b(k, {})<>3 do od; k end: seq(a(n), n=1..100);
Formula
A317241(a(n)) = 3.