cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A317406 Expansion of e.g.f. sin(x/(1 - x)).

Original entry on oeis.org

0, 1, 2, 5, 12, 1, -450, -6931, -89096, -1120895, -14394150, -191263051, -2638282812, -37716883775, -556075744042, -8385570334051, -127637336779920, -1916072623603199, -27033275598036174, -311878728377256475, -918069644450841860, 120594465496571606401, 6362190374664242284782
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 27 2018

Keywords

Comments

Lah transform of the sequence 0, 1, 0, -1, 0, 1, 0, -1, ...

Crossrefs

Programs

  • Maple
    a:=series(sin(x/(1 - x)), x=0, 22): seq(n!*coeff(a, x, n), n=0..21); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Sin[x/(1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^(k + 1) Binomial[n - 1, 2 k - 2] n!/(2 k - 1)!, {k, Floor[(n + 1)/2]}], {n, 0, 22}]
    Join[{0}, Table[n! HypergeometricPFQ[{1/2 - n/2, 1 - n/2}, {1/2, 1, 3/2}, -1/4], {n, 22}]]

Formula

a(n) = Sum_{k=1..floor((n+1)/2)} (-1)^(k+1)*binomial(n-1,2*k-2)*n!/(2*k-1)!.

A317410 Expansion of e.g.f. sec(x/(1 - x)).

Original entry on oeis.org

1, 0, 1, 6, 41, 340, 3361, 38682, 508241, 7506504, 123108961, 2219822990, 43648348985, 929502984540, 21311829302401, 523455901397730, 13712375005949345, 381621247702458640, 11244620308691664961, 349715433597469496982, 11448372539225223596105, 393503844330372123056100, 14169282835811140260616801
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 27 2018

Keywords

Comments

Lah transform of the sequence 1, 0, 1, 0, 5, 0, 61, 0, 1385, ... (A000364 interspersed with zeros).

Crossrefs

Programs

  • Maple
    a:=series(sec(x/(1 - x)), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Sec[x/(1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n - 1, k - 1] Abs[EulerE[k]] n!/k!, {k, 0, n}], {n, 0, 22}]
  • PARI
    x = 'x + O('x^30); Vec(serlaplace(1/cos(x/(1 - x)))) \\ Michel Marcus, Jul 28 2018

Formula

E.g.f.: sec(x/(1 - x)).
a(n) ~ 4 * n! * (Pi+2)^(n-1) / Pi^(n+1). - Vaclav Kotesovec, Jul 28 2018
Showing 1-2 of 2 results.