A317410 Expansion of e.g.f. sec(x/(1 - x)).
1, 0, 1, 6, 41, 340, 3361, 38682, 508241, 7506504, 123108961, 2219822990, 43648348985, 929502984540, 21311829302401, 523455901397730, 13712375005949345, 381621247702458640, 11244620308691664961, 349715433597469496982, 11448372539225223596105, 393503844330372123056100, 14169282835811140260616801
Offset: 0
Keywords
Links
- N. J. A. Sloane, Transforms
Programs
-
Maple
a:=series(sec(x/(1 - x)), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 26 2019
-
Mathematica
nmax = 22; CoefficientList[Series[Sec[x/(1 - x)], {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[Binomial[n - 1, k - 1] Abs[EulerE[k]] n!/k!, {k, 0, n}], {n, 0, 22}]
-
PARI
x = 'x + O('x^30); Vec(serlaplace(1/cos(x/(1 - x)))) \\ Michel Marcus, Jul 28 2018
Formula
E.g.f.: sec(x/(1 - x)).
a(n) ~ 4 * n! * (Pi+2)^(n-1) / Pi^(n+1). - Vaclav Kotesovec, Jul 28 2018
Comments