A317496 Triangle T(n,k) = T(n-1,k) + 3*T(n-3,k-1) for k = 0..floor(n/3) with T(0,0) = 1, T(n,k) = 0 for n or k < 0, read by rows.
1, 1, 1, 1, 3, 1, 6, 1, 9, 1, 12, 9, 1, 15, 27, 1, 18, 54, 1, 21, 90, 27, 1, 24, 135, 108, 1, 27, 189, 270, 1, 30, 252, 540, 81, 1, 33, 324, 945, 405, 1, 36, 405, 1512, 1215, 1, 39, 495, 2268, 2835, 243, 1, 42, 594, 3240, 5670, 1458, 1, 45, 702, 4455, 10206, 5103, 1, 48, 819, 5940, 17010, 13608, 729
Offset: 0
Examples
Triangle begins: 1; 1; 1; 1, 3; 1, 6; 1, 9; 1, 12, 9; 1, 15, 27; 1, 18, 54; 1, 21, 90, 27; 1, 24, 135, 108; 1, 27, 189, 270; 1, 30, 252, 540, 81; 1, 33, 324, 945, 405; 1, 36, 405, 1512, 1215; 1, 39, 495, 2268, 2835, 243; 1, 42, 594, 3240, 5670, 1458; 1, 45, 702, 4455, 10206, 5103; 1, 48, 819, 5940, 17010, 13608, 729;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 364-366.
Links
Crossrefs
Programs
-
GAP
Flat(List([0..20],n->List([0..Int(n/3)],k->3^k/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # Muniru A Asiru, Aug 01 2018
-
Magma
[3^k*Binomial(n-2*k,k): k in [0..Floor(n/3)], n in [0..24]]; // G. C. Greubel, May 12 2021
-
Mathematica
T[n_, k_]:= T[n, k] = 3^k*(n-2*k)!/((n-3*k)!*k!); Table[T[n, k], {n, 0, 18}, {k, 0, Floor[n/3]} ]//Flatten T[0, 0] = 1; T[n_, k_]:= T[n, k] = If[n<0 || k<0, 0, T[n-1, k] + 3T[n-3, k-1]]; Table[T[n, k], {n, 0, 18}, {k, 0, Floor[n/3]}]//Flatten
-
Sage
flatten([[3^k*binomial(n-2*k,k) for k in (0..n//3)] for n in (0..24)]) # G. C. Greubel, May 12 2021
Formula
T(n,k) = 3^k * (n-2*k)!/ (k! * (n-3*k)!) where n is a nonnegative integer and k = 0..floor(n/3).
Comments