A317498 Triangle read by rows of coefficients in expansions of (-2 + 3*x)^n, where n is nonnegative integer.
1, -2, 3, 4, -12, 9, -8, 36, -54, 27, 16, -96, 216, -216, 81, -32, 240, -720, 1080, -810, 243, 64, -576, 2160, -4320, 4860, -2916, 729, -128, 1344, -6048, 15120, -22680, 20412, -10206, 2187, 256, -3072, 16128, -48384, 90720, -108864, 81648, -34992, 6561, -512, 6912, -41472, 145152, -326592, 489888, -489888, 314928, -118098, 19683
Offset: 0
Examples
Triangle begins: 1; -2, 3; 4, -12, 9; -8, 36, -54, 27; 16, -96, 216, -216, 81; -32, 240, -720, 1080, -810, 243; 64, -576, 2160, -4320, 4860, -2916, 729; -128, 1344, -6048, 15120, -22680, 20412, -10206, 2187; 256, -3072, 16128, -48384, 90720, -108864, 81648, -34992, 6561; -512, 6912, -41472, 145152, -326592, 489888, -489888, 314928, -118098, 19683; ...
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, Pages 394-396.
Links
- Zagros Lalo, First layer skew diagonals in center-justified triangle of coefficients in expansion of (-2 + 3 x)^n.
- Eric Weisstein's World of Mathematics, Fermat Polynomial.
Programs
-
GAP
Flat(List([0..8],n->List([0..n],k->(-2)^(n-k)*3^k/(Factorial(n-k)*Factorial(k))*Factorial(n)))); # Muniru A Asiru, Aug 01 2018
-
Mathematica
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, -2 t[n - 1, k] + 3 t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten t[n_, k_] := t[n, k] = ((-2)^(n - k) 3^k)/((n - k)! k!) n!;Table[t[n, k], {n, 0, 9}, {k, 0, n} ] // Flatten Table[CoefficientList[(-2 + 3 x)^n, x], {n, 0, 9}] // Flatten
-
PARI
trianglerows(n) = my(v=[]); for(k=0, n-1, v=Vec((-2+3*x)^k + O(x^(k+1))); print(v)) /* Print initial 10 rows of triangle as follows */ trianglerows(10) \\ Felix Fröhlich, Jul 31 2018
Formula
T(0,0) = 1; T(n,k) = -2 * T(n-1,k) + 3 * T(n-1,k-1) for k = 0,1,...,n and T(n,k)=0 for n or k < 0.
T(n, k) = ((-2)^(n - k) 3^k)/((n - k)! k!) n! for k = 0,1..n.
G.f.: 1 / (1 + 2*x - 3*x*t).
Comments