A317507 Numbers k whose generalized Wilson quotient A157249(k) is prime.
1, 5, 7, 8, 10, 11, 29, 62, 486, 614, 773, 1321, 1906, 2621
Offset: 1
Programs
-
Mathematica
p[n_] := Times @@ Select[Range[n], CoprimeQ[n, #] &]; e[1 | 2 | 4] = 1; e[n_] := (fi = FactorInteger[n]; If[MatchQ[fi, {{(p_)?OddQ, }} | {{2, 1}, {, }}], 1, -1]); a[n] := (p[n] + e[n])/n; n = 1; s={}; Do[If[PrimeQ[a[n]], AppendTo[s,n]], {n, 1, 1000}]; s (* after Jean-François Alcover at A157249 *)
-
PARI
phito(n) = prod(k=2, n-1, k^(gcd(k, n)==1)); \\ A001783 is(n) = if(n%2, isprimepower(n) || n==1, n==2 || n==4 || (isprimepower(n/2, &n) && n>2)); \\ A033948 e(n) = if (is(n), 1, -1); gw(n) = (phito(n)+e(n))/n; isok(n) = isprime(gw(n)); \\ Michel Marcus, Oct 28 2018
Comments