cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317507 Numbers k whose generalized Wilson quotient A157249(k) is prime.

Original entry on oeis.org

1, 5, 7, 8, 10, 11, 29, 62, 486, 614, 773, 1321, 1906, 2621
Offset: 1

Views

Author

Amiram Eldar, Sep 29 2018

Keywords

Comments

The corresponding primes are 2, 5, 103, 13, 19, 329891, ...
Supersequence of A050299 (except for 1, the prime terms of this sequence).
No more terms below 10^4.

Crossrefs

Programs

  • Mathematica
    p[n_] := Times @@ Select[Range[n], CoprimeQ[n, #] &]; e[1 | 2 | 4] = 1; e[n_] := (fi = FactorInteger[n]; If[MatchQ[fi, {{(p_)?OddQ, }} | {{2, 1}, {, }}], 1, -1]); a[n] := (p[n] + e[n])/n; n = 1; s={}; Do[If[PrimeQ[a[n]], AppendTo[s,n]], {n, 1, 1000}]; s (* after Jean-François Alcover at A157249 *)
  • PARI
    phito(n) = prod(k=2, n-1, k^(gcd(k, n)==1)); \\ A001783
    is(n) = if(n%2, isprimepower(n) || n==1, n==2 || n==4 || (isprimepower(n/2, &n) && n>2)); \\ A033948
    e(n) = if (is(n), 1, -1);
    gw(n) = (phito(n)+e(n))/n;
    isok(n) = isprime(gw(n)); \\ Michel Marcus, Oct 28 2018