A317626 Intersections with the x-axis of a bouncing ball on a Sophie Germain billiard table.
2, 4, 8, 10, 14, 18, 28, 30, 38, 44, 58, 60, 64, 78, 80, 84, 94, 98, 120, 140, 144, 148, 164, 170, 198, 214, 218, 220, 228, 240, 248, 254, 270, 304, 318, 338, 340, 344, 350, 368, 408, 410, 430, 470, 480, 484, 494, 500, 504, 520, 528, 534, 578, 604, 630, 634, 644, 658
Offset: 1
Keywords
Links
- Samuel King, Billiard Simulator
- Hilko Koning, Some bouncing examples.
Programs
-
GAP
a:=[];; for p in [3..2000] do if IsPrime(p) and IsPrime(2*p+1) then Add(a,(p+1)/3); fi; od; a; # Muniru A Asiru, Aug 28 2018
-
Mathematica
lst = {}; Do[If[PrimeQ[p] && PrimeQ[2 p + 1], AppendTo[lst, (p + 1)/3]], {p, 5, 2*10^3}]; lst (Select[Prime@ Range[3, 300], PrimeQ[2# + 1] &] + 1)/3 (* Robert G. Wilson v, Aug 02 2018 *)
-
PARI
lista(nn) = forprime(p=2, nn, if (isprime(2*p+1), print1((p+1)/3, ", "));); \\ Michel Marcus, Aug 25 2018
Formula
a(n) = (A005384(n)+1)/3 for n>=3. - Michel Marcus, Aug 25 2018
Comments