cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A317531 Expansion of Sum_{p prime, k>=1} x^(p^k)/(1 + x^(p^k)).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, -1, 2, 0, 1, -1, 1, 0, 2, -2, 1, -1, 1, -1, 2, 0, 1, -2, 2, 0, 3, -1, 1, -1, 1, -3, 2, 0, 2, -2, 1, 0, 2, -2, 1, -1, 1, -1, 3, 0, 1, -3, 2, -1, 2, -1, 1, -2, 2, -2, 2, 0, 1, -2, 1, 0, 3, -4, 2, -1, 1, -1, 2, -1, 1, -3, 1, 0, 3, -1, 2, -1, 1, -3, 4, 0, 1, -2, 2, 0, 2, -2, 1, -2, 2, -1, 2, 0, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 95; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k]] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 95; Rest[CoefficientList[Series[Log[Product[(1 + Boole[PrimePowerQ[k]] x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    Table[DivisorSum[n, (-1)^(n/# + 1) &, PrimePowerQ[#] &], {n, 95}]
  • PARI
    A317531(n) = sumdiv(n,d,((-1)^(n/d+1))*(1==omega(d))); \\ Antti Karttunen, Sep 30 2018

Formula

G.f.: Sum_{k>=1} x^A246655(k)/(1 + x^A246655(k)).
L.g.f.: log(Product_{p prime, k>=1} (1 + x^(p^k))^(1/p^k)) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{d|n} (-1)^(n/d+1)*A069513(d).
If n is odd, a(n) = A001222(n).
Showing 1-1 of 1 results.