A317531 Expansion of Sum_{p prime, k>=1} x^(p^k)/(1 + x^(p^k)).
0, 1, 1, 0, 1, 0, 1, -1, 2, 0, 1, -1, 1, 0, 2, -2, 1, -1, 1, -1, 2, 0, 1, -2, 2, 0, 3, -1, 1, -1, 1, -3, 2, 0, 2, -2, 1, 0, 2, -2, 1, -1, 1, -1, 3, 0, 1, -3, 2, -1, 2, -1, 1, -2, 2, -2, 2, 0, 1, -2, 1, 0, 3, -4, 2, -1, 1, -1, 2, -1, 1, -3, 1, 0, 3, -1, 2, -1, 1, -3, 4, 0, 1, -2, 2, 0, 2, -2, 1, -2, 2, -1, 2, 0, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
nmax = 95; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k]] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]] nmax = 95; Rest[CoefficientList[Series[Log[Product[(1 + Boole[PrimePowerQ[k]] x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]] Table[DivisorSum[n, (-1)^(n/# + 1) &, PrimePowerQ[#] &], {n, 95}]
-
PARI
A317531(n) = sumdiv(n,d,((-1)^(n/d+1))*(1==omega(d))); \\ Antti Karttunen, Sep 30 2018