A317532 Regular triangle read by rows: T(n,k) is the number of multiset partitions of normal multisets of size n into k blocks, where a multiset is normal if it spans an initial interval of positive integers.
1, 2, 2, 4, 8, 4, 8, 34, 26, 8, 16, 124, 168, 76, 16, 32, 448, 962, 674, 208, 32, 64, 1568, 5224, 5344, 2392, 544, 64, 128, 5448, 27336, 39834, 24578, 7816, 1376, 128, 256, 18768, 139712, 283864, 236192, 99832, 24048, 3392, 256, 512, 64448, 702496, 1960320, 2161602, 1186866, 370976, 70656, 8192, 512
Offset: 1
Examples
The T(3,2) = 8 multiset partitions: {{1},{1,1}} {{1},{2,2}} {{2},{1,2}} {{1},{1,2}} {{2},{1,1}} {{1},{2,3}} {{2},{1,3}} {{3},{1,2}} Triangle begins: 1 2 2 4 8 4 8 34 26 8 16 124 168 76 16 32 448 962 674 208 32 ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; Table[Length[Select[Join@@mps/@allnorm[n],Length[#]==k&]],{n,7},{k,n}]
-
PARI
\\ here B(n,k) is A239473(n,k). B(n,k)={sum(r=k, n, binomial(r, k)*(-1)^(r-k))} Row(n)={Vecrev(sum(j=1, n, B(n,j)*polcoef(1/prod(k=1, n, (1 - x^k*y + O(x*x^n))^binomial(k+j-1,j-1)), n))/y)} { for(n=1, 10, print(Row(n))) } \\ Andrew Howroyd, Dec 31 2019
Extensions
Terms a(29) and beyond from Andrew Howroyd, Dec 31 2019