cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317532 Regular triangle read by rows: T(n,k) is the number of multiset partitions of normal multisets of size n into k blocks, where a multiset is normal if it spans an initial interval of positive integers.

Original entry on oeis.org

1, 2, 2, 4, 8, 4, 8, 34, 26, 8, 16, 124, 168, 76, 16, 32, 448, 962, 674, 208, 32, 64, 1568, 5224, 5344, 2392, 544, 64, 128, 5448, 27336, 39834, 24578, 7816, 1376, 128, 256, 18768, 139712, 283864, 236192, 99832, 24048, 3392, 256, 512, 64448, 702496, 1960320, 2161602, 1186866, 370976, 70656, 8192, 512
Offset: 1

Views

Author

Gus Wiseman, Jul 30 2018

Keywords

Examples

			The T(3,2) = 8 multiset partitions:
  {{1},{1,1}}
  {{1},{2,2}}
  {{2},{1,2}}
  {{1},{1,2}}
  {{2},{1,1}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
Triangle begins:
    1
    2    2
    4    8    4
    8   34   26    8
   16  124  168   76   16
   32  448  962  674  208   32
  ...
		

Crossrefs

Row sums are A255906.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Select[Join@@mps/@allnorm[n],Length[#]==k&]],{n,7},{k,n}]
  • PARI
    \\ here B(n,k) is A239473(n,k).
    B(n,k)={sum(r=k, n, binomial(r, k)*(-1)^(r-k))}
    Row(n)={Vecrev(sum(j=1, n, B(n,j)*polcoef(1/prod(k=1, n, (1 - x^k*y + O(x*x^n))^binomial(k+j-1,j-1)), n))/y)}
    { for(n=1, 10, print(Row(n))) } \\ Andrew Howroyd, Dec 31 2019

Extensions

Terms a(29) and beyond from Andrew Howroyd, Dec 31 2019