cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317545 Number of multimin factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 5, 1, 2, 2, 8, 1, 4, 1, 5, 2, 2, 1, 12, 2, 2, 4, 5, 1, 5, 1, 16, 2, 2, 2, 11, 1, 2, 2, 12, 1, 5, 1, 5, 5, 2, 1, 28, 2, 4, 2, 5, 1, 8, 2, 12, 2, 2, 1, 15, 1, 2, 5, 32, 2, 5, 1, 5, 2, 5, 1, 29, 1, 2, 4, 5, 2, 5, 1, 28, 8, 2, 1, 15, 2, 2, 2, 12, 1, 12, 2, 5, 2, 2, 2, 64, 1, 4, 5, 11, 1, 5, 1, 12, 5
Offset: 1

Views

Author

Gus Wiseman, Jul 31 2018

Keywords

Comments

A multimin factorizations of n is an ordered factorization of n into factors greater than 1 such that the sequence of minimal primes dividing each factor is weakly increasing.

Examples

			The a(36) = 11 multimin factorizations:
  (36),
  (2*18), (4*9), (6*6), (12*3), (18*2),
  (2*2*9), (2*6*3), (4*3*3), (6*2*3),
  (2*2*3*3).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==1,1,Sum[a[d],{d,Divisors[n/FactorInteger[n][[1,1]]]}]];
    Array[a,100]
  • PARI
    A317545(n) = if(1==n,1,my(spf = factor(n)[1,1]); sumdiv(n/spf,d,A317545(d))); \\ Antti Karttunen, Sep 10 2018
    
  • PARI
    memo317545 = Map(); \\ Memoized version.
    A317545(n) = if(1==n,1,if(mapisdefined(memo317545, n), mapget(memo317545, n), my(spf = factor(n)[1,1], v = sumdiv(n/spf,d,A317545(d))); mapput(memo317545, n, v); (v))); \\ Antti Karttunen, Sep 10 2018

Formula

a(1) = 1; a(n > 1) = Sum_{d|(n/p)} a(d), where p is the smallest prime dividing n.

Extensions

More terms from Antti Karttunen, Sep 10 2018