A317545 Number of multimin factorizations of n.
1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 5, 1, 2, 2, 8, 1, 4, 1, 5, 2, 2, 1, 12, 2, 2, 4, 5, 1, 5, 1, 16, 2, 2, 2, 11, 1, 2, 2, 12, 1, 5, 1, 5, 5, 2, 1, 28, 2, 4, 2, 5, 1, 8, 2, 12, 2, 2, 1, 15, 1, 2, 5, 32, 2, 5, 1, 5, 2, 5, 1, 29, 1, 2, 4, 5, 2, 5, 1, 28, 8, 2, 1, 15, 2, 2, 2, 12, 1, 12, 2, 5, 2, 2, 2, 64, 1, 4, 5, 11, 1, 5, 1, 12, 5
Offset: 1
Keywords
Examples
The a(36) = 11 multimin factorizations: (36), (2*18), (4*9), (6*6), (12*3), (18*2), (2*2*9), (2*6*3), (4*3*3), (6*2*3), (2*2*3*3).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
a[n_]:=If[n==1,1,Sum[a[d],{d,Divisors[n/FactorInteger[n][[1,1]]]}]]; Array[a,100]
-
PARI
A317545(n) = if(1==n,1,my(spf = factor(n)[1,1]); sumdiv(n/spf,d,A317545(d))); \\ Antti Karttunen, Sep 10 2018
-
PARI
memo317545 = Map(); \\ Memoized version. A317545(n) = if(1==n,1,if(mapisdefined(memo317545, n), mapget(memo317545, n), my(spf = factor(n)[1,1], v = sumdiv(n/spf,d,A317545(d))); mapput(memo317545, n, v); (v))); \\ Antti Karttunen, Sep 10 2018
Formula
a(1) = 1; a(n > 1) = Sum_{d|(n/p)} a(d), where p is the smallest prime dividing n.
Extensions
More terms from Antti Karttunen, Sep 10 2018
Comments