cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A317715 Number of ways to split an integer partition of n into consecutive subsequences with equal sums.

Original entry on oeis.org

1, 1, 3, 4, 9, 8, 21, 16, 39, 38, 64, 57, 146, 102, 186, 211, 352, 298, 593, 491, 906, 880, 1273, 1256, 2444, 1998, 3038, 3277, 4861, 4566, 7710, 6843, 10841, 10742, 14966, 15071, 24499, 21638, 31334, 32706, 47157, 44584, 67464, 63262, 91351, 94247, 125248
Offset: 0

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Examples

			The a(4) = 9 constant-sum split partitions:
  (4),
  (31),
  (22), (2)(2),
  (211), (2)(11),
  (1111), (11)(11), (1)(1)(1)(1).
The a(6) = 21 constant-sum split partitions:
  (6),
  (51),
  (42),
  (411),
  (33), (3)(3),
  (321), (3)(21),
  (3111), (3)(111),
  (222), (2)(2)(2),
  (2211), (2)(2)(11),
  (21111), (21)(111), (2)(11)(11),
  (111111), (111)(111), (11)(11)(11), (1)(1)(1)(1)(1)(1).
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Sum[Length[Select[comps[y],SameQ@@Total/@#&]],{y,IntegerPartitions[n]}],{n,10}]

Extensions

a(16)-a(46) from Hiroaki Yamanouchi, Oct 02 2018

A317546 Number of multimin partitions of integer partitions of n.

Original entry on oeis.org

1, 3, 7, 18, 42, 104, 246, 594, 1416, 3391, 8084, 19312, 46041, 109829, 261827, 624254, 1487981, 3546883, 8453770, 20149014, 48021864, 114451536, 272769936, 650084053, 1549312743
Offset: 1

Views

Author

Gus Wiseman, Jul 31 2018

Keywords

Comments

A multimin partition of m is an ordered multiset partition of m such that the minima of the blocks are weakly increasing.

Examples

			The a(3) = 7 multimin partitions of integer partitions of 3:
  (3),
  (1)(2), (12),
  (1)(1)(1), (1)(11), (11)(1), (111).
The a(4) = 18 multimin partitions of integer partitions of 4:
  (4),
  (1)(3), (13),
  (2)(2), (22),
  (1)(1)(2), (1)(12), (11)(2), (12)(1), (112),
  (1)(1)(1)(1), (1)(1)(11), (1)(11)(1), (1)(111), (11)(1)(1), (11)(11), (111)(1), (1111).
		

Crossrefs

Programs

  • Mathematica
    mmcount[m_List]:=mmcount[m]=If[Length[m]===0,0,1+Plus@@mmcount/@Union[Subsets[Rest[m]]]];
    Table[Sum[mmcount[Reverse[ptn]],{ptn,IntegerPartitions[n]}],{n,25}]

Formula

a(n) = Sum_{k > 0 : A056239(k) = n} A317545(k).

A318434 Number of ways to split the integer partition with Heinz number n into consecutive subsequences with equal sums.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(3072) = 5 constant-sum split partitions:
  (21111111111)
  (21111)(111111)
  (211)(1111)(1111)
  (21)(111)(111)(111)
  (2)(11)(11)(11)(11)(11)
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Length[Select[comps[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],SameQ@@Total/@#&]],{n,100}]

A317508 Number of ways to split the integer partition with Heinz number n into consecutive subsequences with weakly decreasing sums.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 3, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 4, 1, 7, 2, 2, 2, 6, 1, 2, 2, 7, 1, 4, 1, 4, 3, 2, 1, 10, 2, 3, 2, 4, 1, 5, 2, 7, 2, 2, 1, 7, 1, 2, 4, 11, 2, 4, 1, 4, 2, 4, 1, 9, 1, 2, 3, 4, 2, 4, 1, 11, 5, 2, 1, 8, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(60) = 7 split partitions:
  (3)(2)(1)(1)
  (32)(1)(1)
  (3)(21)(1)
  (3)(2)(11)
  (321)(1)
  (32)(11)
  (3211)
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Length[Select[compositionPartitions[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],OrderedQ[Total/@#]&]],{n,100}]

A319001 Number of ordered multiset partitions of integer partitions of n where the sequence of GCDs of the partitions is weakly increasing.

Original entry on oeis.org

1, 1, 3, 7, 18, 42, 105, 248, 606, 1450, 3507, 8415, 20305, 48785, 117502, 282574, 680137, 1636005, 3936841, 9470776, 22787529, 54822530, 131901491, 317336519, 763489051, 1836862947, 4419324581, 10632404189, 25580507505, 61543948594, 148068421107
Offset: 0

Views

Author

Gus Wiseman, Sep 07 2018

Keywords

Comments

If we form a multiorder by treating integer partitions (a,...,z) as multiarrows GCD(a, ..., z) <= {z, ..., a}, then a(n) is the number of triangles of weight n.

Examples

			The a(4) = 18 ordered multiset partitions:
  {{4}}   {{1,3}}    {{2,2}}     {{1,1,2}}       {{1,1,1,1}}
         {{1},{3}}  {{2},{2}}   {{1},{1,2}}     {{1},{1,1,1}}
                                {{1,2},{1}}     {{1,1,1},{1}}
                                {{1,1},{2}}     {{1,1},{1,1}}
                               {{1},{1},{2}}   {{1},{1},{1,1}}
                                               {{1},{1,1},{1}}
                                               {{1,1},{1},{1}}
                                              {{1},{1},{1},{1}}
		

Crossrefs

Programs

  • PARI
    \\ here B(n) is A000837 as vector.
    B(n) = {dirmul(vector(n, k, moebius(k)), vector(n, k, numbpart(k)))}
    seq(n) ={my(p=x*Ser(B(n))); Vec(1/prod(g=1, n, 1 - subst(p + O(x*x^(n\g)), x, x^g)))} \\ Andrew Howroyd, Jan 16 2023

Extensions

a(0)=1 prepended and terms a(11) and beyond from Andrew Howroyd, Jan 16 2023

A319002 Number of ordered factorizations of n where the sequence of GCDs of prime indices (A289508) of the factors is weakly increasing.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 5, 1, 2, 2, 8, 1, 4, 1, 5, 2, 2, 1, 12, 2, 2, 4, 5, 1, 6, 1, 16, 2, 2, 2, 11, 1, 2, 2, 12, 1, 5, 1, 5, 4, 2, 1, 28, 2, 4, 2, 5, 1, 8, 2, 12, 2, 2, 1, 18, 1, 2, 5, 32, 2, 6, 1, 5, 2, 6, 1, 29, 1, 2, 4, 5, 2, 5, 1, 28, 8, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2018

Keywords

Comments

Also the number of ordered multiset partitions of the multiset of prime indices of n where the sequence of GCDs of the blocks is weakly increasing. If we form a multiorder by treating integer partitions (a,...,z) as multiarrows GCD(a,...,z) <= {z,...,a}, then a(n) is the number of triangles whose composite ground is the integer partition with Heinz number n.

Examples

			The a(36) = 11 ordered factorizations:
  (2*2*3*3),
  (2*2*9), (2*6*3), (6*2*3), (4*3*3),
  (2*18), (18*2), (12*3), (4*9), (6*6),
  (36).
The a(36) = 11 ordered multiset partitions:
     {{1,1,2,2}}
    {{1},{1,2,2}}
    {{1,2,2},{1}}
    {{1,1,2},{2}}
    {{1,1},{2,2}}
    {{1,2},{1,2}}
   {{1},{1},{2,2}}
   {{1},{1,2},{2}}
   {{1,2},{1},{2}}
   {{1,1},{2},{2}}
  {{1},{1},{2},{2}}
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    gix[n_]:=GCD@@PrimePi/@If[n==1,{},FactorInteger[n]][[All,1]];
    Table[Length[Select[Join@@Permutations/@facs[n],OrderedQ[gix/@#]&]],{n,100}]

A319003 Number of ordered multiset partitions of integer partitions of n where the sequence of LCMs of the blocks is weakly increasing.

Original entry on oeis.org

1, 1, 3, 7, 17, 38, 87, 191, 420, 908, 1954, 4160, 8816, 18549, 38851, 80965, 168077, 347566, 716443, 1472344, 3017866, 6170789, 12590805, 25640050, 52122784, 105791068, 214413852, 434007488, 877480395, 1772235212, 3575967030, 7209301989, 14523006820
Offset: 0

Views

Author

Gus Wiseman, Sep 07 2018

Keywords

Comments

If we form a multiorder by treating integer partitions (a,...,z) as multiarrows LCM(a,...,z) <= {z,...,a}, then a(n) is the number of triangles of weight n.

Examples

			The a(4) = 17 ordered multiset partitions:
  {{4}}   {{1,3}}    {{2,2}}     {{1,1,2}}      {{1,1,1,1}}
         {{1},{3}}  {{2},{2}}   {{1},{1,2}}    {{1},{1,1,1}}
                                {{1,1},{2}}    {{1,1,1},{1}}
                               {{1},{1},{2}}   {{1,1},{1,1}}
                                               {{1},{1},{1,1}}
                                               {{1},{1,1},{1}}
                                               {{1,1},{1},{1}}
                                              {{1},{1},{1},{1}}
		

Crossrefs

Programs

  • PARI
    seq(n)={my(M=Map()); for(m=1, n, forpart(p=m, my(k=lcm(Vec(p)), z); mapput(M, k, if(mapisdefined(M,k,&z), z, 1 + O(x*x^n)) - x^m))); Vec(1/vecprod(Mat(M)[,2]))} \\ Andrew Howroyd, Jan 16 2023

Extensions

a(0)=1 prepended and terms a(11) and beyond from Andrew Howroyd, Jan 16 2023

A319004 Number of ordered factorizations of n where the sequence of LCMs of the prime indices (A290103) of each factor is weakly increasing.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 4, 1, 2, 2, 8, 1, 5, 1, 4, 2, 2, 1, 8, 2, 2, 4, 4, 1, 5, 1, 16, 2, 2, 2, 11, 1, 2, 2, 8, 1, 5, 1, 4, 4, 2, 1, 16, 2, 5, 2, 4, 1, 12, 2, 8, 2, 2, 1, 11, 1, 2, 4, 32, 2, 5, 1, 4, 2, 5, 1, 23, 1, 2, 4, 4, 2, 5, 1, 16, 8, 2, 1, 11, 2, 2, 2, 8, 1, 12, 2, 4, 2, 2, 2, 32, 1, 5, 4, 11, 1, 5, 1, 8, 5
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2018

Keywords

Comments

Also the number of ordered multiset partitions of the multiset of prime indices of n where the sequence of LCMs of the parts is weakly increasing. If we form a multiorder by treating integer partitions (a,...,z) as multiarrows LCM(a,...,z) <= {z,...,a}, then a(n) is the number of triangles whose composite ground is the integer partition with Heinz number n.

Examples

			The a(60) = 11 ordered factorizations:
  (2*2*3*5),
  (2*2*15), (2*3*10), (2*6*5), (4*3*5),
  (2*30), (3*20), (4*15), (12*5), (6*10),
  (60).
The a(60) = 11 ordered multiset partitions:
     {{1,1,2,3}}
    {{1},{1,2,3}}
    {{2},{1,1,3}}
    {{1,1,2},{3}}
    {{1,1},{2,3}}
    {{1,2},{1,3}}
   {{1},{1},{2,3}}
   {{1},{2},{1,3}}
   {{1},{1,2},{3}}
   {{1,1},{2},{3}}
  {{1},{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    lix[n_]:=LCM@@PrimePi/@If[n==1,{},FactorInteger[n]][[All,1]];
    Table[Length[Select[Join@@Permutations/@facs[n],OrderedQ[lix/@#]&]],{n,100}]
  • PARI
    is_weakly_increasing(v) = { for(i=2,#v,if(v[i]A290103(n) = lcm(apply(p->primepi(p),factor(n)[,1]));
    A319004aux(n, facs) = if(1==n, is_weakly_increasing(apply(f -> A290103(f),Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1), newfacs = List(facs); listput(newfacs,d); s += A319004aux(n/d, newfacs))); (s));
    A319004(n) = if((1==n)||isprime(n),1,A319004aux(n, List([]))); \\ Antti Karttunen, Sep 23 2018

Formula

A001055(n) <= a(n) <= A074206(n). - Antti Karttunen, Sep 23 2018

Extensions

More terms from Antti Karttunen, Sep 23 2018

A319118 Number of multimin tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 6, 2, 2, 1, 8, 1, 2, 2, 24, 1, 6, 1, 8, 2, 2, 1, 42, 2, 2, 6, 8, 1, 8, 1, 112, 2, 2, 2, 38, 1, 2, 2, 42, 1, 8, 1, 8, 8, 2, 1, 244, 2, 6, 2, 8, 1, 24, 2, 42, 2, 2, 1, 58, 1, 2, 8, 568, 2, 8, 1, 8, 2, 8, 1, 268, 1, 2, 6, 8, 2, 8, 1, 244, 24
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2018

Keywords

Comments

A multimin factorization of n is an ordered factorization of n into factors greater than 1 such that the sequence of minimal primes dividing each factor is weakly increasing. A multimin tree-factorization of n is either the number n itself or a sequence of multimin tree-factorizations, one of each factor in a multimin factorization of n with at least two factors.

Examples

			The a(12) = 8 multimin tree-factorizations:
  12,
  (2*6), (4*3), (6*2), (2*2*3),
  (2*(2*3)), ((2*2)*3), ((2*3)*2).
Or as series-reduced plane trees of multisets:
  112,
  (1,12), (11,2), (12,1), (1,1,2),
  (1,(1,2)), ((1,1),2), ((1,2),1).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
    Table[Length[mmftrees[n]],{n,100}]

Formula

a(prime^n) = A118376(n).
a(product of n distinct primes) = A005804(n).

A318577 Number of complete multimin tree-factorizations of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 11, 1, 3, 1, 4, 1, 1, 1, 19, 1, 1, 3, 4, 1, 4, 1, 45, 1, 1, 1, 17, 1, 1, 1, 19, 1, 4, 1, 4, 4, 1, 1, 96, 1, 3, 1, 4, 1, 11, 1, 19, 1, 1, 1, 26, 1, 1, 4, 197, 1, 4, 1, 4, 1, 4, 1, 104, 1, 1, 3, 4, 1, 4, 1, 96, 11, 1, 1, 26, 1, 1, 1, 19, 1, 19, 1, 4, 1, 1, 1, 501, 1, 3, 4, 17
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2018

Keywords

Comments

A multimin factorization of n is an ordered factorization of n into factors greater than 1 such that the sequence of minimal primes dividing each factor is weakly increasing. A multimin tree-factorization of n is either the number n itself or a sequence of at least two multimin tree-factorizations, one of each factor in a multimin factorization of n. A multimin tree-factorization is complete if the leaves are all prime numbers.

Examples

			The a(12) = 4 trees are (2*2*3), (2*(2*3)), ((2*3)*2), ((2*2)*3).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
    Table[Length[Select[mmftrees[n],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{n,100}]

Formula

a(prime^n) = A001003(n - 1).
a(product of n distinct primes) = A000311(n).
Showing 1-10 of 12 results. Next