cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317580 Number of unlabeled rooted identity trees with n nodes and a distinguished leaf.

Original entry on oeis.org

1, 1, 1, 3, 5, 12, 28, 66, 153, 367, 880, 2121, 5127, 12441, 30248, 73746, 180077, 440571, 1079438, 2648511, 6506170, 16001256, 39393173, 97074140, 239419963, 590972968, 1459808862, 3608483107, 8925476591, 22090139751, 54702648393, 135533335933, 335967782916
Offset: 1

Views

Author

Gus Wiseman, Jul 31 2018

Keywords

Comments

Total number of leaves in all rooted identity trees with n nodes. - Andrew Howroyd, Aug 28 2018

Examples

			The a(6) = 12 rooted identity trees with a distinguished leaf:
(((((O))))),
(((O(o)))), (((o(O)))),
((O((o)))), ((o((O)))),
(O(((o)))), (o(((O)))),
((O)((o))), ((o)((O))),
(O(o(o))), (o(O(o))), (o(o(O))).
		

Crossrefs

Programs

  • Mathematica
    urit[n_]:=Join@@Table[Select[Union[Sort/@Tuples[urit/@ptn]],UnsameQ@@#&],{ptn,IntegerPartitions[n-1]}];
    Table[Sum[Length[Flatten[{t/.{}->1}]],{t,urit[n]}],{n,10}]
  • PARI
    WeighMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, (-1)^(i-1)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    seq(n)={my(v=[y]); for(n=2, n, v=concat([y], WeighMT(v))); apply(p -> subst(deriv(p), y, 1), v)} \\ Andrew Howroyd, Aug 28 2018

Formula

a(n) = Sum_{k=1, n} k*A055327(n, k). - Andrew Howroyd, Aug 28 2018

Extensions

Terms a(26) and beyond from Andrew Howroyd, Aug 28 2018