cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A038046 Shifts left under transform T where Ta is (identity) DCONV a.

Original entry on oeis.org

1, 1, 3, 6, 12, 17, 32, 39, 63, 81, 120, 131, 213, 226, 311, 377, 503, 520, 742, 761, 1031, 1169, 1442, 1465, 2008, 2093, 2558, 2801, 3465, 3494, 4591, 4622, 5628, 6054, 7111, 7390, 9321, 9358, 10899, 11616, 13873, 13914, 17070, 17113, 20063, 21509, 24462
Offset: 1

Views

Author

Keywords

Comments

Eigensequence of triangle A126988. (i.e. the sequence shifts upon multiplication from the left by triangle A126988). - Gary W. Adamson, Apr 27 2009
Number of planted achiral trees with a distinguished leaf. - Gus Wiseman, Jul 31 2018

Examples

			From _Gus Wiseman_, Jul 31 2018: (Start)
The a(5) = 12 planted achiral trees with a distinguished leaf:
  (Oooo), (oOoo), (ooOo), (oooO),
  ((O)(o)), ((o)(O)),
  ((Ooo)), ((oOo)), ((ooO)),
  (((Oo))), (((oO))),
  ((((O)))).
(End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n, (m-> m*
          add(a(d)/d, d=numtheory[divisors](m)))(n-1))
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, May 09 2019
  • Mathematica
    a[n_]:=If[n==1,1,Sum[d*a[(n-1)/d],{d,Divisors[n-1]}]];
    Array[a,30] (* Gus Wiseman, Jul 31 2018 *)

Formula

a(1) = 1; a(n > 1) = Sum_{d|(n-1)} d * a((n-1)/d). - Gus Wiseman, Jul 31 2018
G.f. A(x) satisfies: A(x) = x * (1 + Sum_{j>=1} j*A(x^j)). - Ilya Gutkovskiy, May 09 2019

A003227 Endpoints (leaves) in rooted trees with n nodes.

Original entry on oeis.org

1, 1, 3, 8, 22, 58, 160, 434, 1204, 3341, 9363, 26308, 74376, 210823, 599832, 1710803, 4891876, 14015505, 40231632, 115669419, 333052242, 960219982, 2771707332, 8009222307, 23166563032, 67069289457, 194332834601
Offset: 1

Views

Author

Keywords

Comments

Number of unlabeled rooted trees with n nodes and a distinguished leaf. - Gus Wiseman, Jul 31 2018

Examples

			The a(4) = 8 rooted trees with a distinguished leaf are (((O))), ((Oo)), ((oO)), (O(o)), (o(O)), (Ooo), (oOo), (ooO). - _Gus Wiseman_, Jul 31 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Sum[Length[Flatten[{t/.{}->1}]],{t,urt[n]}],{n,15}] (* Gus Wiseman, Jul 31 2018 *)

Formula

a(n) = Sum_{k=1..n} k*A055277(n, k).

Extensions

Corrected and extended with formula by Christian G. Bower, May 25 2000
Showing 1-2 of 2 results.