cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A055897 a(n) = n*(n-1)^(n-1).

Original entry on oeis.org

1, 2, 12, 108, 1280, 18750, 326592, 6588344, 150994944, 3874204890, 110000000000, 3423740047332, 115909305827328, 4240251492291542, 166680102383370240, 7006302246093750000, 313594649253062377472, 14890324713954061755186, 747581753430634213933056
Offset: 1

Views

Author

Christian G. Bower, Jun 12 2000

Keywords

Comments

Total number of leaves in all labeled rooted trees with n nodes.
Number of endofunctions of [n] such that no element of [n-1] is fixed. E.g., a(3)=12: 123 -> 331, 332, 333, 311, 312, 313, 231, 232, 233, 211, 212, 213.
Number of functions f: {1, 2, ..., n} --> {1, 2, ..., n} such that f(1) != f(2), f(2) != f(3), ..., f(n-1) != f(n). - Warut Roonguthai, May 06 2006
Determinant of the n X n matrix ((2n, n^2, 0, ..., 0), (1, 2n, n^2, 0, ..., 0), (0, 1, 2n, n^2, 0, ..., 0), ..., (0, ..., 0, 1, 2n)). - Michel Lagneau, May 04 2010
For n > 1: a(n) = A240993(n-1) / A240993(n-2). - Reinhard Zumkeller, Aug 31 2014
Total number of points m such that f^(-1)(m) = {m}, (i.e., the preimage of m is the singleton set {m}) summed over all functions f:[n]->[n]. - Geoffrey Critzer, Jan 20 2022

Crossrefs

Programs

Formula

E.g.f.: x/(1-T), where T=T(x) is Euler's tree function (see A000169).
a(n) = Sum_{k=1..n} A055302(n, k)*k.
a(n) = the n-th term of the (n-1)-th binomial transform of {1, 1, 4, 18, 96, ..., (n-1)*(n-1)!, ...} (cf. A001563). - Paul D. Hanna, Nov 17 2003
a(n) = (n-1)^(n-1) + Sum_{i=2..n} (n-1)^(n-i)*binomial(n-1, i-1)*(i-1) *(i-1)!. - Paul D. Hanna, Nov 17 2003
a(n) = [x^(n-1)] 1/(1 - (n-1)*x)^2. - Paul D. Hanna, Dec 27 2012
a(n) ~ exp(-1) * n^n. - Vaclav Kotesovec, Nov 14 2014

Extensions

Additional comments from Vladeta Jovovic, Mar 31 2001 and Len Smiley, Dec 11 2001

A261919 Number of n-node unlabeled graphs without isolated nodes or endpoints (i.e., no nodes of degree 0 or 1).

Original entry on oeis.org

1, 0, 0, 1, 3, 11, 62, 510, 7459, 197867, 9808968, 902893994, 153723380584, 48443158427276, 28363698856991892, 30996526139142442460, 63502034434187094606966, 244852545450108200518282934, 1783161611521019613186341526720, 24603891216946828886755056314074748
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2015

Keywords

Examples

			From _Gus Wiseman_, Aug 15 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(5) = 11 graphs (empty columns not shown):
  {}  {12,13,23}  {12,13,24,34}        {12,13,24,35,45}
                  {13,14,23,24,34}     {12,14,25,34,35,45}
                  {12,13,14,23,24,34}  {12,15,25,34,35,45}
                                       {13,14,23,24,35,45}
                                       {12,13,24,25,34,35,45}
                                       {13,15,24,25,34,35,45}
                                       {14,15,24,25,34,35,45}
                                       {12,13,15,24,25,34,35,45}
                                       {14,15,23,24,25,34,35,45}
                                       {13,14,15,23,24,25,34,35,45}
                                       {12,13,14,15,23,24,25,34,35,45}
(End)
		

References

  • F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.

Crossrefs

Cf. A004108 (connected version), A004110 (version allowing isolated nodes).
The labeled version is A100743.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    b[n_] := Sum[permcount[p]*2^edges[p]*Coefficient[Product[1-x^p[[i]], {i, 1, Length[p]}], x, n-k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; b[0] = 1;
    a[n_] := b[n] - b[n-1];
    a /@ Range[0, 19] (* Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A004110 *)

Formula

First differences of A004110: a(n) = A004110(n)-A004110(n-1).
Euler transform of A004108, if we assume A004108(1) = 0. - Gus Wiseman, Aug 15 2019

Extensions

a(1)-a(11) computed by Brendan McKay, Sep 15 2015
a(12)-a(26) computed from A004110 by Max Alekseyev, Sep 16 2015
a(0) = 1 prepended by Gus Wiseman, Aug 15 2019

A302515 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 3, 4, 8, 8, 5, 11, 6, 16, 13, 7, 15, 9, 9, 32, 21, 13, 21, 28, 14, 14, 64, 34, 23, 52, 36, 48, 21, 22, 128, 55, 37, 118, 80, 90, 89, 28, 35, 256, 89, 63, 220, 235, 199, 184, 163, 37, 56, 512, 144, 109, 408, 541, 689, 458, 376, 297, 51, 90, 1024, 233, 183
Offset: 1

Views

Author

R. H. Hardin, Apr 09 2018

Keywords

Comments

Table starts
...1..2..3...5....8...13....21.....34......55......89......144.......233
...2..3..3...5....7...13....23.....37......63.....109......183.......309
...4..4.11..15...21...52...118....220.....408.....852.....1764......3460
...8..6..9..28...36...80...235....541....1115....2554.....6095.....13920
..16..9.14..48...90..199...689...2125....5410...13908....39850....114503
..32.14.21..89..184..458..1784...7182...22544...67096...220654....775150
..64.22.28.163..376.1088..4558..23944...95681..344525..1302832...5550086
.128.35.37.297..832.2651.12324..82857..414880.1775176..7735877..39371229
.256.56.51.544.1744.6257.32336.282857.1748514.8778929.44362463.272701915

Examples

			Some solutions for n=5 k=4
..0..0..1..0. .0..1..0..1. .0..1..1..1. .0..1..0..1. .0..1..0..1
..1..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..1..1. .0..1..0..1
..1..0..1..0. .0..0..1..1. .0..1..0..1. .0..0..0..1. .0..1..0..1
..1..0..1..0. .1..1..0..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..1..0..0..0. .1..0..1..0. .0..0..0..1. .0..1..0..1. .0..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A001611(n+1).
Row 1 is A000045(n+1).
Row 2 is A003227(n-1) for n>2.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-3)
k=3: a(n) = a(n-1) +a(n-4) for n>7
k=4: a(n) = a(n-1) +2*a(n-3) +2*a(n-4) -a(n-6) -a(n-7) for n>10
k=5: a(n) = a(n-1) +6*a(n-3) +2*a(n-5) -12*a(n-6) -4*a(n-7) +8*a(n-9) for n>11
k=6: a(n) = a(n-1) +6*a(n-3) +5*a(n-4) +3*a(n-5) -8*a(n-6) -6*a(n-7) -3*a(n-8) for n>12
k=7: [order 15] for n>21
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +2*a(n-3) for n>5
n=3: a(n) = a(n-1) +2*a(n-3) +4*a(n-4) for n>7
n=4: a(n) = a(n-1) +a(n-2) +3*a(n-3) +5*a(n-4) -a(n-5) -5*a(n-6) -4*a(n-7) for n>10
n=5: [order 13] for n>17
n=6: [order 23] for n>29
n=7: [order 50] for n>55

A055541 Total number of leaves (nodes of vertex degree 1) in all labeled trees with n nodes.

Original entry on oeis.org

0, 2, 6, 36, 320, 3750, 54432, 941192, 18874368, 430467210, 11000000000, 311249095212, 9659108818944, 326173191714734, 11905721598812160, 467086816406250000, 19599665578316398592, 875901453762003632658, 41532319635035234107392, 2082547005958224830656820
Offset: 1

Views

Author

Keywords

Comments

Equivalently, a(n) is the number of rooted labeled trees such that the root node has degree 1. - Geoffrey Critzer, Feb 07 2012

Crossrefs

Essentially the same as A061302.

Programs

  • Magma
    [0,2] cat [n*(n-1)^(n-2): n in [3..10]]; // G. C. Greubel, Nov 11 2017
  • Mathematica
    Join[{0,2}, Table[Sum[n!/k! StirlingS2[n-2,n-k] k, {k,2,n-1}], {n,3,20}]] (* Geoffrey Critzer, Nov 22 2011 *)
    Join[{0,2}, Table[n*(n-1)^(n-2), {n,3,50}]] (* or *) Rest[With[{nmax = 40}, CoefficientList[Series[-x*LambertW[-x], {x, 0, nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Nov 11 2017 *)
  • PARI
    for(n=1, 30, print1(if(n==1, 0, if(n==2, 2, n*(n-1)^(n-2))), ", ")) \\ G. C. Greubel, Nov 11 2017
    

Formula

From Vladeta Jovovic, Mar 31 2001: (Start)
a(n) = n*(n-1)^(n-2), n > 1.
E.g.f.: -x*LambertW(-x). (End)
a(n) = Sum_{k=1..n} (A055314(n, k)*k). - Christian G. Bower, Jun 12 2000
E.g.f.: x*T(x) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Feb 07 2012

Extensions

More terms from Christian G. Bower, Jun 12 2000

A003228 Endpoints in trees with n nodes.

Original entry on oeis.org

1, 2, 2, 5, 9, 21, 43, 101, 226, 556, 1333, 3365, 8500, 22007, 57258, 151264, 401761, 1077063, 2902599, 7871250, 21440642, 58672589, 161155637, 444240627, 1228400744, 3406668865, 9472308269, 26402207803, 73755064178
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = Sum_{k=1..n} k*c(n, k), where c(n, k) = A055290(n, k) has g.f. (1-x+x*y)*B(x, y)+(1/2)*(B(x^2, y^2)-B(x, y)^2) and B(x, y) is g.f. for A055372.

Extensions

Corrected and extended with formula by Christian G. Bower, May 25 2000

A055540 Total number of leaves (nodes of vertex degree 1) in all graphs of n nodes.

Original entry on oeis.org

0, 2, 4, 14, 38, 153, 766, 6259, 88064, 2324157, 116563882, 11060411527, 1968703079886, 654492092481733, 406111248305672980, 471005105043787823717, 1023566652048387537072658, 4179937690541808658135640875, 32172436158252943170541450460638
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{k=1..n} k*A327371(n, k). - Andrew Howroyd, Sep 04 2019

Extensions

a(8) and a(9) from Eric W. Weisstein, Jun 02 2004
a(10) from Andrew Howroyd, Sep 04 2019
Terms a(11) and beyond from Andrew Howroyd, Jan 22 2021

A317580 Number of unlabeled rooted identity trees with n nodes and a distinguished leaf.

Original entry on oeis.org

1, 1, 1, 3, 5, 12, 28, 66, 153, 367, 880, 2121, 5127, 12441, 30248, 73746, 180077, 440571, 1079438, 2648511, 6506170, 16001256, 39393173, 97074140, 239419963, 590972968, 1459808862, 3608483107, 8925476591, 22090139751, 54702648393, 135533335933, 335967782916
Offset: 1

Views

Author

Gus Wiseman, Jul 31 2018

Keywords

Comments

Total number of leaves in all rooted identity trees with n nodes. - Andrew Howroyd, Aug 28 2018

Examples

			The a(6) = 12 rooted identity trees with a distinguished leaf:
(((((O))))),
(((O(o)))), (((o(O)))),
((O((o)))), ((o((O)))),
(O(((o)))), (o(((O)))),
((O)((o))), ((o)((O))),
(O(o(o))), (o(O(o))), (o(o(O))).
		

Crossrefs

Programs

  • Mathematica
    urit[n_]:=Join@@Table[Select[Union[Sort/@Tuples[urit/@ptn]],UnsameQ@@#&],{ptn,IntegerPartitions[n-1]}];
    Table[Sum[Length[Flatten[{t/.{}->1}]],{t,urit[n]}],{n,10}]
  • PARI
    WeighMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, (-1)^(i-1)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    seq(n)={my(v=[y]); for(n=2, n, v=concat([y], WeighMT(v))); apply(p -> subst(deriv(p), y, 1), v)} \\ Andrew Howroyd, Aug 28 2018

Formula

a(n) = Sum_{k=1, n} k*A055327(n, k). - Andrew Howroyd, Aug 28 2018

Extensions

Terms a(26) and beyond from Andrew Howroyd, Aug 28 2018
Showing 1-7 of 7 results.