cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A088956 Triangle, read by rows, of coefficients of the hyperbinomial transform.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 16, 9, 3, 1, 125, 64, 18, 4, 1, 1296, 625, 160, 30, 5, 1, 16807, 7776, 1875, 320, 45, 6, 1, 262144, 117649, 27216, 4375, 560, 63, 7, 1, 4782969, 2097152, 470596, 72576, 8750, 896, 84, 8, 1, 100000000, 43046721, 9437184, 1411788, 163296, 15750
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2003

Keywords

Comments

The hyperbinomial transform of a sequence {b} is defined to be the sequence {d} given by d(n) = Sum_{k=0..n} T(n,k)*b(k), where T(n,k) = (n-k+1)^(n-k-1)*C(n,k).
Given a table in which the n-th row is the n-th binomial transform of the first row, then the hyperbinomial transform of any diagonal results in the next lower diagonal in the table.
The simplest example of a table of iterated binomial transforms is A009998, with a main diagonal of {1,2,9,64,625,...}; and the hyperbinomial transform of this diagonal gives the next lower diagonal, {1,3,16,125,1296,...}, since 1=(1)*1, 3=(1)*1+(1)*2, 16=(3)*1+(2)*2+(1)*9, 125=(16)*1+(9)*2+(3)*9+(1)*64, etc.
Another example: the hyperbinomial transform maps A065440 into A055541, since HYPERBINOMIAL([1,1,1,8,81,1024,15625]) = [1,2,6,36,320,3750,54432] where e.g.f.: A065440(x)+x = x-x/( LambertW(-x)*(1+LambertW(-x)) ), e.g.f.: A055541(x) = x-x*LambertW(-x).
The m-th iteration of the hyperbinomial transform is given by the triangle of coefficients defined by T_m(n,k) = m*(n-k+m)^(n-k-1)*binomial(n,k).
Example: PARI code for T_m: {a=[1,1,1,8,81,1024,15625]; m=1; b=vector(length(a)); for(n=0,length(a)-1, b[n+1]=sum(k=0,n, m*(n-k+m)^(n-k-1)*binomial(n,k)*a[k+1]); print1(b[n+1],","))} RETURNS b=[1,2,6,36,320,3750,54432].
The INVERSE hyperbinomial transform is thus given by m=-1: {a=[1,2,6,36,320,3750,54432]; m=-1; b=vector(length(a)); for(n=0,length(a)-1, b[n+1]=sum(k=0,n, m*(n-k+m)^(n-k-1)*binomial(n,k)*a[k+1]); print1(b[n+1],","))} RETURNS b=[1,1,1,8,81,1024,15625].
Simply stated, the HYPERBINOMIAL transform is to -LambertW(-x)/x as the BINOMIAL transform is to exp(x).
Let A[n] be the set of all forests of labeled rooted trees on n nodes. Build a superset B[n] of A[n] by designating "some" (possibly all or none) of the isolated nodes in each forest. T(n,k) is the number of elements in B[n] with exactly k designated nodes. See A219034. - Geoffrey Critzer, Nov 10 2012

Examples

			Rows begin:
       {1},
       {1,      1},
       {3,      2,     1},
      {16,      9,     3,    1},
     {125,     64,    18,    4,   1},
    {1296,    625,   160,   30,   5,  1},
   {16807,   7776,  1875,  320,  45,  6, 1},
  {262144, 117649, 27216, 4375, 560, 63, 7, 1}, ...
		

Crossrefs

Cf. A088957 (row sums), A000272 (first column), A009998, A105599, A132440, A215534 (matrix inverse), A215652.
Cf. A227325 (central terms).

Programs

  • Haskell
    a088956 n k =  a095890 (n + 1) (k + 1) * a007318' n k `div` (n - k + 1)
    a088956_row n = map (a088956 n) [0..n]
    a088956_tabl = map a088956_row [0..]
    -- Reinhard Zumkeller, Jul 07 2013
  • Mathematica
    nn=8; t=Sum[n^(n-1)x^n/n!, {n,1,nn}]; Range[0,nn]! CoefficientList[Series[Exp[t+y x] ,{x,0,nn}], {x,y}] //Grid (* Geoffrey Critzer, Nov 10 2012 *)

Formula

T(n, k) = (n-k+1)^(n-k-1)*C(n, k).
E.g.f.: -LambertW(-x)*exp(x*y)/x. - Vladeta Jovovic, Oct 27 2003
From Peter Bala, Sep 11 2012: (Start)
Let T(x) = Sum_{n >= 0} n^(n-1)*x^n/n! denote the tree function of A000169. The e.g.f. is (T(x)/x)*exp(t*x) = exp(T(x))*exp(t*x) = 1 + (1 + t)*x + (3 + 2*t + t^2)*x^2/2! + .... Hence the triangle is the exponential Riordan array [T(x)/x,x] belonging to the exponential Appell group.
The matrix power (A088956)^r has the e.g.f. exp(r*T(x))*exp(t*x) with triangle entries given by r*(n-k+r)^(n-k-1)*binomial(n,k) for n and k >= 0. See A215534 for the case r = -1.
Let A(n,x) = x*(x+n)^(n-1) be an Abel polynomial. The present triangle is the triangle of connection constants expressing A(n,x+1) as a linear combination of the basis polynomials A(k,x), 0 <= k <= n. For example, A(4,x+1) = 125*A(0,x) + 64*A(1,x) + 18*A(2,x) + 4*A(3,x) + A(4,x) gives row 4 as [125,64,18,4,1].
Let S be the array with the sequence [1,2,3,...] on the main subdiagonal and zeros elsewhere. S is the infinitesimal generator for Pascal's triangle (see A132440). Then the infinitesimal generator for this triangle is S*A088956; that is, A088956 = Exp(S*A088956), where Exp is the matrix exponential.
With T(x) the tree function as above, define E(x) = T(x)/x. Then A088956 = E(S) = Sum_{n>=0} (n+1)^(n-1)*S^n/n!.
For commuting lower unit triangular matrices A and B, we define A raised to the matrix power B, denoted A^^B, to be the matrix Exp(B*log(A)), where the matrix logarithm Log(A) is defined as Sum_{n >= 1} (-1)^(n+1)*(A-1)^n/n. Let P denote Pascal's triangle A007318. Then the present triangle, call it X, solves the matrix equation P^^X = X . See A215652 for the solution to X^^P = P. Furthermore, if we denote the inverse of X by Y then X^^Y = P. As an infinite tower of matrix powers, A088956 = P^^(P^^(P^^(...))).
A088956 augmented with the sequence (x,x,x,...) on the first superdiagonal is the production matrix for the row polynomials of A105599.
(End)
T(n,k) = A095890(n+1,k+1) * A007318(n,k) / (n-k+1), 0 <= k <= n. - Reinhard Zumkeller, Jul 07 2013
Sum_{k = 0..n} T(n,n-k)*(x - k - 1)^(n-k) = x^n. Setting x = n + 1 gives Sum_{k = 0..n} T(n,k)*k^k = (n + 1)^n. - Peter Bala, Feb 17 2017
As lower triangular matrices, this entry, T, equals unsigned A137542 * A007318 * signed A059297. The Pascal matrix is sandwiched between a pair of inverse matrices, so this entry is conjugate to the Pascal matrix, allowing convergent analytic expressions of T, say f(T), to be computed as f(A007318) sandwiched between the inverse pair. - Tom Copeland, Dec 06 2021

A055897 a(n) = n*(n-1)^(n-1).

Original entry on oeis.org

1, 2, 12, 108, 1280, 18750, 326592, 6588344, 150994944, 3874204890, 110000000000, 3423740047332, 115909305827328, 4240251492291542, 166680102383370240, 7006302246093750000, 313594649253062377472, 14890324713954061755186, 747581753430634213933056
Offset: 1

Views

Author

Christian G. Bower, Jun 12 2000

Keywords

Comments

Total number of leaves in all labeled rooted trees with n nodes.
Number of endofunctions of [n] such that no element of [n-1] is fixed. E.g., a(3)=12: 123 -> 331, 332, 333, 311, 312, 313, 231, 232, 233, 211, 212, 213.
Number of functions f: {1, 2, ..., n} --> {1, 2, ..., n} such that f(1) != f(2), f(2) != f(3), ..., f(n-1) != f(n). - Warut Roonguthai, May 06 2006
Determinant of the n X n matrix ((2n, n^2, 0, ..., 0), (1, 2n, n^2, 0, ..., 0), (0, 1, 2n, n^2, 0, ..., 0), ..., (0, ..., 0, 1, 2n)). - Michel Lagneau, May 04 2010
For n > 1: a(n) = A240993(n-1) / A240993(n-2). - Reinhard Zumkeller, Aug 31 2014
Total number of points m such that f^(-1)(m) = {m}, (i.e., the preimage of m is the singleton set {m}) summed over all functions f:[n]->[n]. - Geoffrey Critzer, Jan 20 2022

Crossrefs

Programs

Formula

E.g.f.: x/(1-T), where T=T(x) is Euler's tree function (see A000169).
a(n) = Sum_{k=1..n} A055302(n, k)*k.
a(n) = the n-th term of the (n-1)-th binomial transform of {1, 1, 4, 18, 96, ..., (n-1)*(n-1)!, ...} (cf. A001563). - Paul D. Hanna, Nov 17 2003
a(n) = (n-1)^(n-1) + Sum_{i=2..n} (n-1)^(n-i)*binomial(n-1, i-1)*(i-1) *(i-1)!. - Paul D. Hanna, Nov 17 2003
a(n) = [x^(n-1)] 1/(1 - (n-1)*x)^2. - Paul D. Hanna, Dec 27 2012
a(n) ~ exp(-1) * n^n. - Vaclav Kotesovec, Nov 14 2014

Extensions

Additional comments from Vladeta Jovovic, Mar 31 2001 and Len Smiley, Dec 11 2001

A206429 Triangular array read by rows. T(n,k) is the number of rooted labeled trees on n nodes such that the root node has degree k. n>=2, 1<=k<=n-1.

Original entry on oeis.org

2, 6, 3, 36, 24, 4, 320, 240, 60, 5, 3750, 3000, 900, 120, 6, 54432, 45360, 15120, 2520, 210, 7, 941192, 806736, 288120, 54880, 5880, 336, 8, 18874368, 16515072, 6193152, 1290240, 161280, 12096, 504, 9, 430467210, 382637520, 148803480, 33067440, 4592700, 408240, 22680, 720
Offset: 2

Views

Author

Geoffrey Critzer, Feb 07 2012

Keywords

Examples

			Triangle begins:
      2;
      6     3;
     36    24     4;
    320   240    60    5;
   3750  3000   900  120    6;
  54432 45360 15120 2520  210  7;
		

Crossrefs

Column 1 is A055541.
Row sums are A000169.

Programs

  • Mathematica
    nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];f[list_]:=Select[list,#>0&];Map[f,Drop[Transpose[Table[Range[0,nn]!CoefficientList[Series[x t^k/k!,{x,0,nn}],x],{k,1,8}]],2]]//Flatten
  • PARI
    T(n)={my(f=serreverse(x*exp(-x + O(x^n)))); [Vecrev(p/y) | p<-Vec(serlaplace(x*exp(y*f) - x))]}
    { my(A=T(7)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 22 2020

Formula

E.g.f.: x*exp(y * T(x)) where T(x) is the e.g.f. for A000169.

A055540 Total number of leaves (nodes of vertex degree 1) in all graphs of n nodes.

Original entry on oeis.org

0, 2, 4, 14, 38, 153, 766, 6259, 88064, 2324157, 116563882, 11060411527, 1968703079886, 654492092481733, 406111248305672980, 471005105043787823717, 1023566652048387537072658, 4179937690541808658135640875, 32172436158252943170541450460638
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{k=1..n} k*A327371(n, k). - Andrew Howroyd, Sep 04 2019

Extensions

a(8) and a(9) from Eric W. Weisstein, Jun 02 2004
a(10) from Andrew Howroyd, Sep 04 2019
Terms a(11) and beyond from Andrew Howroyd, Jan 22 2021

A158497 Triangle T(n,k) formed by the coordination sequences and the number of leaves for trees.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 12, 1, 4, 12, 36, 108, 1, 5, 20, 80, 320, 1280, 1, 6, 30, 150, 750, 3750, 18750, 1, 7, 42, 252, 1512, 9072, 54432, 326592, 1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890
Offset: 0

Views

Author

Thomas Wieder, Mar 20 2009

Keywords

Comments

Consider the k-fold Cartesian products CP(n,k) of the vector A(n) = [1, 2, 3, ..., n].
An element of CP(n,k) is a n-tuple T_t of the form T_t = [i_1, i_2, i_3, ..., i_k] with t=1, .., n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j = i_(j+1): T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j = i_(j+1)).
The test on i_j > i_(j+1) generates A158498. One gets the Pascal triangle A007318 if the indicator function tests whether for any two i_j, i_(j+1) in T_t one has i_j >= i_(j+1).
Use of other indicator functions can also calculate the Bell numbers A000110, A000045 or A000108.

Examples

			Array, A(n, k) = n*(n-1)^(k-1) for n > 1, A(n, k) = 1 otherwise, begins as:
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  2,   2,    2,     2,      2,       2,        2,        2, ... A040000;
  1,  3,   6,   12,    24,     48,      96,      192,      384, ... A003945;
  1,  4,  12,   36,   108,    324,     972,     2916,     8748, ... A003946;
  1,  5,  20,   80,   320,   1280,    5120,    20480,    81920, ... A003947;
  1,  6,  30,  150,   750,   3750,   18750,    93750,   468750, ... A003948;
  1,  7,  42,  252,  1512,   9072,   54432,   326592,  1959552, ... A003949;
  1,  8,  56,  392,  2744,  19208,  134456,   941192,  6588344, ... A003950;
  1,  9,  72,  576,  4608,  36864,  294912,  2359296, 18874368, ... A003951;
  1, 10,  90,  810,  7290,  65610,  590490,  5314410, 47829690, ... A003952;
  1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, ............. A003953;
  1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, ............. A003954;
  1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, ............. A170732;
  ... ;
The triangle begins as:
  1
  1, 1;
  1, 2,  2;
  1, 3,  6,  12;
  1, 4, 12,  36,  108;
  1, 5, 20,  80,  320,  1280;
  1, 6, 30, 150,  750,  3750,  18750;
  1, 7, 42, 252, 1512,  9072,  54432, 326592;
  1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344;
  ...;
T(3,3) = 12 counts the triples (1,2,1), (1,2,3), (1,3,1), (1,3,2), (2,1,2), (2,1,3), (2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3,2,3) out of a total of 3^3 = 27 triples in the CP(3,3).
		

Crossrefs

Array rows n: A170733 (n=14), ..., A170769 (n=50).
Columns k: A000012(n) (k=0), A000027(n) (k=1), A002378(n-1) (k=2), A011379(n-1) (k=3), A179824(n) (k=4), A101362(n-1) (k=5), 2*A168351(n-1) (k=6), 2*A168526(n-1) (k=7), 2*A168635(n-1) (k=8), 2*A168675(n-1) (k=9), 2*A170783(n-1) (k=10), 2*A170793(n-1) (k=11).
Diagonals k: A055897 (k=n), A055541 (k=n-1), A373395 (k=n-2), A379612 (k=n-3).
Sums: (-1)^n*A065440(n) (signed row).

Programs

  • Magma
    A158497:= func< n,k | k le 1 select n^k else n*(n-1)^(k-1) >;
    [A158497(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2025
    
  • Mathematica
    A158497[n_, k_]:= If[n<2 || k==0, 1, n*(n-1)^(k-1)];
    Table[A158497[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2025 *)
  • SageMath
    def A158497(n,k): return n^k if k<2 else n*(n-1)^(k-1)
    print(flatten([[A158497(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 18 2025

Formula

T(n, k) = (n-1)^(k-1) + (n-1)^k = n*A079901(n-1,k-1), k > 0.
Sum_{k=0..n} T(n,k) = (n*(n-1)^n - 2)/(n-2), n > 2.

Extensions

Edited by R. J. Mathar, Mar 31 2009
More terms added by G. C. Greubel, Mar 18 2025

A195203 E.g.f.: Sum_{n>=0} x*(n + x)^(n-1) * x^n/n!.

Original entry on oeis.org

1, 0, 2, 6, 48, 440, 5310, 77952, 1356152, 27284112, 623393370, 15946253840, 451464791052, 14014830400584, 473330219980982, 17278004243854200, 677844684489863760, 28441920741699231392, 1270962028978738313778, 60259311813834246030048, 3021271708308614076699380
Offset: 0

Views

Author

Paul D. Hanna, Sep 13 2011

Keywords

Comments

a(n) is the total number of leaves in all labeled forests with n nodes. Cf. A055541. - Geoffrey Critzer, Aug 22 2012

Examples

			E.g.f.: A(x) = 1 + 2*x^2/2! + 6*x^3/3! + 48*x^4/4! + 440*x^5/5! + ...
where
A(x) = 1 + x*(1+x)^0*x^1/1! + x*(2+x)*x^2/2! + x*(3+x)^2*x^3/3! + x*(4+x)^3*x^4/4! + ...
Also, A(x) = W(x)^x where W(x) = LambertW(-x)/(-x) and begins:
W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + ...
		

Programs

  • Maple
    a:= n-> add(binomial(n, k)*binomial(n-k-1, k-1)*(n-k)^(n-2*k) *k!, k=0..n/2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 22 2012
  • Mathematica
    nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
    Range[0, nn]! CoefficientList[Series[Exp[x t] , {x, 0, nn}], x]  (* Geoffrey Critzer, Aug 22 2012 *)
  • PARI
    {a(n)=local(A=sum(k=0,n,x*(k+x)^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(A,n)}
    
  • PARI
    {a(n)=local(W=sum(k=0,n,(k+1)^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(W^x,n)}
    
  • PARI
    {a(n)=local(W=sum(k=0,n,(k+1)^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(exp(x^2*W),n)}

Formula

E.g.f.: exp(-x*LambertW(-x)).
E.g.f.: ( LambertW(-x)/(-x) )^x.
E.g.f.: ( Sum_{n>=0} (n + 1)^(n-1) * x^n/n! )^x.
E.g.f.: ( Sum_{n>=0} (n + x)^n * x^n/n! ) * (-x)/LambertW(-x). - Paul D. Hanna, Jun 16 2018
E.g.f.: LambertW(-x) / ( -x * Sum_{n>=0} (n - x)^n * x^n/n! ). - Paul D. Hanna, Jun 16 2018
a(n) = Sum_{k=0..floor(n/2)} C(n,k)*C(n-k-1,k-1)*(n-k)^(n-2*k)*k!. - Alois P. Heinz, Aug 22 2012
a(n) ~ exp(exp(-1)-1)*n^(n-1). - Vaclav Kotesovec, Jun 26 2013

A066320 Triangle read by rows: T(n, k) = binomial(n, k)*k^k*(n-k)^(n-k-1) k=0..n-1.

Original entry on oeis.org

1, 2, 2, 9, 6, 12, 64, 36, 48, 108, 625, 320, 360, 540, 1280, 7776, 3750, 3840, 4860, 7680, 18750, 117649, 54432, 52500, 60480, 80640, 131250, 326592, 2097152, 941192, 870912, 945000, 1146880, 1575000, 2612736, 6588344, 43046721
Offset: 1

Views

Author

Christian G. Bower, Dec 13 2001

Keywords

Examples

			Triangle starts:
  [1][      1]
  [2][      2,      2]
  [3][      9,      6,     12]
  [4][     64,     36,     48,    108]
  [5][    625,    320,    360,    540,    1280]
  [6][   7776,   3750,   3840,   4860,    7680,   18750]
  [7][ 117649,  54432,  52500,  60480,   80640,  131250,  326592]
  [8][2097152, 941192, 870912, 945000, 1146880, 1575000, 2612736, 6588344]
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 68 (2.1.43).

Crossrefs

T = n * A185390 after proper alignment of offsets.
Columns 1, 2: A000169, A055541.
Main diagonal: A055897.
Row sums give A000312.

Programs

  • Julia
    # Assuming offset (n=1, k=1).
    T(n, k) = binomial(n-1, k-1)*(k-1)^(k-1)*n*(n-k+1)^(n-k-1)
    for n in 1:9 (println([n], [T(n, k) for k in 1:n])) end
    # Peter Luschny, Jan 12 2024

Formula

E.g.f.: -LambertW(-y)/(1+LambertW(-x*y)). - Vladeta Jovovic, Jan 26 2006
T(n, k) = n*binomial(n-1, k-1)*(k-1)^(k-1)*(n-k+1)^(n-k-1) assuming offset (1, 1). - Peter Luschny, Jan 12 2024

A061302 a(n) = n! * [x^n] W(-x)*(W(-x) + 2)/(W(-x) + 1), where W denotes Lambert's W function.

Original entry on oeis.org

0, 2, 6, 36, 320, 3750, 54432, 941192, 18874368, 430467210, 11000000000, 311249095212, 9659108818944, 326173191714734, 11905721598812160, 467086816406250000, 19599665578316398592, 875901453762003632658
Offset: 0

Views

Author

Gero Burghardt (gerogoestohollywood(AT)yahoo.de), Jun 05 2001

Keywords

Examples

			2*x + 6*x^2 +36*x^3 + 320*x^4 + 3750*x^5 + 54432*x^6 + 941192*x^7 + ...
		

References

  • Stephan Wolfram, The Mathematica Book, 4th Edition, Cambridge University Press, section 3.2.10 'Special Functions', page 772, 1999.

Crossrefs

Cf. A061250.
Essentially the same as A055541.

Programs

  • Maple
    W := LambertW: egf := -W(-x)*(W(-x) + 2)/(W(-x) + 1):
    ser := series(egf, x, 20): seq(n!*coeff(ser, x, n), n = 0..17); # Peter Luschny, Feb 10 2023
  • Mathematica
    Range[18]!CoefficientList[ Series[ -ProductLog[ -x], {x, 0, 17}], x] (* Robert G. Wilson v, Mar 23 2005 *)
    a[ n_] := If[ n < 0, 0, (n + 1)! SeriesCoefficient[ -ProductLog[-x], {x, 0, n}]] (* Michael Somos, Jun 07 2012 *)

Formula

a(n) = (n+1)*n^(n-1) with a(0) = 0.

Extensions

Corrected and extended by Jason Earls, Jun 09 2001
Name made consistent with offset by Peter Luschny, Feb 10 2023

A215720 The number of functions f:{1,2,...,n}->{1,2,...,n}, endofunctions, such that exactly one nonrecurrent element is mapped into each recurrent element.

Original entry on oeis.org

1, 0, 2, 6, 60, 560, 7350, 111552, 2009672, 41378976, 963527850, 25009038560, 716437784172, 22453784964624, 764345507271710, 28085186967504240, 1107971902218683280, 46710909213378892352, 2095883952368863510098, 99724281567446320231104, 5015524096516005263567540
Offset: 0

Views

Author

Geoffrey Critzer, Aug 22 2012

Keywords

Comments

x in {1,2,...,n} is a recurrent element if there is some k such that f^k(x) = x where f^k(x) denotes iterated functional composition. In other words, a recurrent element is in a cycle of the functional digraph.

Examples

			a(2) = 2 because we have: (1->1,2->1), (1->2,2->2).
		

Crossrefs

Programs

  • Maple
    a:= n-> `if`(n=0, 1, n! *add(i*(n-i)^(n-2*i-1)/(n-2*i)!, i=0..n/2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 22 2012
  • Mathematica
    nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
    Range[0, nn]! CoefficientList[Series[1/(1 - x t) , {x, 0, nn}], x]

Formula

E.g.f.: 1/(1 - x*T(x)) where T(x) is the e.g.f. for A000169.
a(n) = n! * Sum_{i=0..floor(n/2)} i*(n-i)^(n-2*i-1)/(n-2*i)! for n>0, a(0) = 1. - Alois P. Heinz, Aug 22 2012
a(n) ~ exp(1)/(exp(1)-1)^2 * n^(n-1). - Vaclav Kotesovec, Sep 30 2013
Showing 1-9 of 9 results.