cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A227176 E.g.f.: LambertW(LambertW(-x)) / LambertW(-x).

Original entry on oeis.org

1, 1, 5, 43, 525, 8321, 162463, 3774513, 101808185, 3129525793, 108063152091, 4143297446729, 174723134310277, 8039591465487297, 400924930695585143, 21543513647508536161, 1241094846565489688817, 76314967969651411780673, 4989260143610128556354611
Offset: 0

Views

Author

Paul D. Hanna, Jul 04 2013

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! +...
Define W(x) = LambertW(-x)/(-x), where W(x) = exp(x*W(x)) and begins:
W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! +...
then
(1) A(x) = W(x*W(x)),
(4) A(x) = W(x)^A(x),
(3) A(x) = exp( x*A(x)*W(x) ),
(8) A(x/exp(x)) = W(x).
The e.g.f. also satisfies:
(6) A(x) = 1 + A(x)*x + A(x)*(2 + A(x))*x^2/2! + A(x)*(3 + A(x))^2*x^3/3! + A(x)*(4 + A(x))^3*x^4/4! + A(x)*(5 + A(x))^4*x^5/5! +...
and, for all real m,
(7) A(x)^m = 1 + m*A(x)*(1+m*A(x))^0*x^1/1! + m*A(x)*(2+m*A(x))^1*x^2/2! + m*A(x)*(3+m*A(x))^2*x^3/3! + m*A(x)*(4+m*A(x))^3*x^4/4! + m*A(x)*(5+m*A(x))^4*x^5/5! +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[LambertW[LambertW[-x]]/LambertW[-x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 05 2013 *)
  • PARI
    {a(n) = if(n==0,1,sum(k=0,n,binomial(n,k)*k*(k+1)^(k-1)*n^(n-k-1)))}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* E.g.f.: A(x) = W(x*W(x)) */
    {a(n)=local(W=sum(k=0,n,(k+1)^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(subst(W,x,x*W), n)}
    
  • PARI
    /* E.g.f.: A(x) = exp(T(T(x)) ) */
    {a(n)=local(T=sum(k=1,n,k^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(exp(subst(T,x,T)), n)}
    
  • PARI
    /* E.g.f.: A(x) = exp( -A(x)*LambertW(-x) ) */
    {a(n)=local(A=1+x,LambertW=sum(k=1,n,-k^(k-1)*(-x)^k/k!)+x*O(x^n));
    for(i=1,n,A=exp(-A*subst(LambertW,x,-x) +x*O(x^n)));n!*polcoeff(A, n)}
    
  • PARI
    /* E.g.f.: A(x) = ( LambertW(-x)/(-x) )^A(x) */
    {a(n)=local(A=1+x,W=sum(k=0,n,(k+1)^(k-1)*x^k/k!)+x*O(x^n));
    for(i=1,n,A=W^A);n!*polcoeff(A, n)}
    
  • PARI
    /* E.g.f.: A(x) = Sum_{n>=0} A(x)*(n + A(x))^(n-1) * x^n/n!. */
    {a(n)=local(A=1+x);for(i=1,n,A=sum(k=0, n, A*(k+A)^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(A, n)}

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * k*(k+1)^(k-1) * n^(n-k-1) for n>0 with a(0)=1.
E.g.f. A(x) satisfies:
(1) A(x) = W(x*W(x)), where W(x) = LambertW(-x)/(-x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.
(2) A(x) = exp( T(T(x)) ), where T(x) = -LambertW(-x) is Euler's tree function (A000169).
(3) A(x) = exp( -A(x)*LambertW(-x) ).
(4) A(x) = ( LambertW(-x)/(-x) )^A(x).
(5) A(x) = ( Sum_{n>=0} (n+1)^(n-1)*x^n/n! )^A(x).
(6) A(x) = Sum_{n>=0} A(x)*(n + A(x))^(n-1) * x^n/n!.
(7) A(x)^m = Sum_{n>=0} m*A(x)*(n + m*A(x))^(n-1) * x^n/n!.
(8) A(x/exp(x)) = exp(T(x)) = LambertW(-x)/(-x).
(9) log(A(x)) = A(x) * Sum_{n>=1} n^(n-1) * x^n/n!, and equals the e.g.f. of A207833.
(10) A(x) = 1 + Sum_{n>=1} (n+1)^(n-1)*x^n/n! * Sum_{k>=0} n*(k+n)^(k-1)*x^k/k!.
a(n) ~ n! * (-exp((1+exp(-1))*n)/(sqrt(2*Pi*(1-exp(-1)))*n^(3/2) *LambertW(-exp(-1-exp(-1))))). - Vaclav Kotesovec, Jul 05 2013

A215720 The number of functions f:{1,2,...,n}->{1,2,...,n}, endofunctions, such that exactly one nonrecurrent element is mapped into each recurrent element.

Original entry on oeis.org

1, 0, 2, 6, 60, 560, 7350, 111552, 2009672, 41378976, 963527850, 25009038560, 716437784172, 22453784964624, 764345507271710, 28085186967504240, 1107971902218683280, 46710909213378892352, 2095883952368863510098, 99724281567446320231104, 5015524096516005263567540
Offset: 0

Views

Author

Geoffrey Critzer, Aug 22 2012

Keywords

Comments

x in {1,2,...,n} is a recurrent element if there is some k such that f^k(x) = x where f^k(x) denotes iterated functional composition. In other words, a recurrent element is in a cycle of the functional digraph.

Examples

			a(2) = 2 because we have: (1->1,2->1), (1->2,2->2).
		

Crossrefs

Programs

  • Maple
    a:= n-> `if`(n=0, 1, n! *add(i*(n-i)^(n-2*i-1)/(n-2*i)!, i=0..n/2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 22 2012
  • Mathematica
    nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
    Range[0, nn]! CoefficientList[Series[1/(1 - x t) , {x, 0, nn}], x]

Formula

E.g.f.: 1/(1 - x*T(x)) where T(x) is the e.g.f. for A000169.
a(n) = n! * Sum_{i=0..floor(n/2)} i*(n-i)^(n-2*i-1)/(n-2*i)! for n>0, a(0) = 1. - Alois P. Heinz, Aug 22 2012
a(n) ~ exp(1)/(exp(1)-1)^2 * n^(n-1). - Vaclav Kotesovec, Sep 30 2013
Showing 1-2 of 2 results.