cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A007557 Shifts left when inverse Moebius transform applied twice.

Original entry on oeis.org

1, 1, 3, 5, 10, 12, 24, 26, 43, 52, 78, 80, 133, 135, 189, 219, 295, 297, 428, 430, 584, 642, 804, 806, 1100, 1123, 1395, 1494, 1856, 1858, 2428, 2430, 2977, 3143, 3739, 3811, 4790, 4792, 5654, 5930, 7072, 7074, 8656
Offset: 1

Views

Author

Keywords

Comments

Equals eigensequence of triangle A127170 (the square of the inverse Mobius transform). - Gary W. Adamson, Apr 27 2009

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[ DivisorSigma[0, (n - 1)/d]*a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 43}] (* Jean-François Alcover, Dec 12 2011, after Vladeta Jovovic *)

Formula

a(n+1) = Sum_{d divides n} tau(n/d)*a(d). - Vladeta Jovovic, Jan 24 2003
From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x * (1 + Sum_{i>=1} Sum_{j>=1} A(x^(i*j))).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + Sum_{i>=1} Sum_{j>=1} a(i)*x^(i*j)/(1 - x^(i*j))). (End)

Extensions

More terms from Vladeta Jovovic, Jan 24 2003

A003227 Endpoints (leaves) in rooted trees with n nodes.

Original entry on oeis.org

1, 1, 3, 8, 22, 58, 160, 434, 1204, 3341, 9363, 26308, 74376, 210823, 599832, 1710803, 4891876, 14015505, 40231632, 115669419, 333052242, 960219982, 2771707332, 8009222307, 23166563032, 67069289457, 194332834601
Offset: 1

Views

Author

Keywords

Comments

Number of unlabeled rooted trees with n nodes and a distinguished leaf. - Gus Wiseman, Jul 31 2018

Examples

			The a(4) = 8 rooted trees with a distinguished leaf are (((O))), ((Oo)), ((oO)), (O(o)), (o(O)), (Ooo), (oOo), (ooO). - _Gus Wiseman_, Jul 31 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Sum[Length[Flatten[{t/.{}->1}]],{t,urt[n]}],{n,15}] (* Gus Wiseman, Jul 31 2018 *)

Formula

a(n) = Sum_{k=1..n} k*A055277(n, k).

Extensions

Corrected and extended with formula by Christian G. Bower, May 25 2000

A214575 Triangle read by rows: T(n,k) is the number of partitions of n in which each part is divisible by the next and have first part equal to k (1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 4, 2, 4, 1, 2, 1, 1, 1, 4, 3, 4, 1, 3, 1, 1, 1, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 1, 1, 6, 4, 9, 2, 7, 1, 4, 2, 2, 1, 1, 1, 6, 4, 9, 2, 7, 1, 4, 2, 2, 1, 1, 1, 1, 7, 4, 12, 2, 9, 2, 6, 2, 3, 1, 2, 1, 1
Offset: 1

Views

Author

Emeric Deutsch, Aug 18 2012

Keywords

Comments

T(n,k) is also the number of generalized Bethe trees with n edges and k leaves.
A generalized Bethe tree is a rooted tree in which vertices at the same level have the same degree; they are called uniform trees in the Goldberg and Livshits reference.
There is a simple bijection between generalized Bethe trees with n edges and partitions of n in which each part is divisible by the next (the parts are given by the number of edges at the successive levels). We have the correspondences: number of edges --- sum of parts; root degree --- last part; number of leaves --- first part; height --- number of parts.
Sum of entries in row n is A003238(n+1).
Apparently, Sum(k*T(n,k), k>=1) = A038046(n+1).

Examples

			T(7,4)=2 because we have (4,2,1) and (4,1,1,1).
Triangle starts:
  1;
  1, 1;
  1, 1, 1;
  1, 2, 1, 1;
  1, 2, 1, 1, 1;
  1, 3, 2, 2, 1, 1;
		

Crossrefs

An augmented version is A301343.

Programs

  • Maple
    with(numtheory): T := proc (n, k) if k = 1 then 1 elif n < k then 0 else add(T(n-k, divisors(k)[j]), j = 1 .. tau(k)) end if end proc: for n to 18 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form

Formula

T(n,1)=1; T(n,k) = Sum_{j|k}T(n-k,j); T(n,k)=0 if k>n.

A318372 a(1) = 1; a(n+1) = Sum_{d|n} d*a(d).

Original entry on oeis.org

1, 1, 3, 10, 43, 216, 1308, 9157, 73299, 659701, 6597228, 72569509, 870835456, 11320860929, 158492062165, 2377380932700, 38038094996499, 646647614940484, 11639657069589711, 221153484322204510, 4423069686450687468, 92884463415464445994, 2043458195140290381379, 46999538488226678771718
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 24 2018

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;
    add(d*procname(d),d=numtheory:-divisors(n-1))
    end proc:
    f(1):= 1:
    map(f, [$1..30]); # Robert Israel, Aug 24 2018
  • Mathematica
    a[n_] := a[n] = Sum[d a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 24}]
  • PARI
    a(n) = if (n==1, 1, sumdiv(n-1, d, d*a(d))); \\ Michel Marcus, Aug 25 2018

Formula

L.g.f.: -log(Product_{n>=1} (1 - x^n)^a(n)) = Sum_{n>=1} a(n+1)*x^n/n.
a(n) ~ c * (n-1)!, where c = 1.818022128135673369551657167939033389270758547856526032865616543756614556559... - Vaclav Kotesovec, Aug 25 2018

A317580 Number of unlabeled rooted identity trees with n nodes and a distinguished leaf.

Original entry on oeis.org

1, 1, 1, 3, 5, 12, 28, 66, 153, 367, 880, 2121, 5127, 12441, 30248, 73746, 180077, 440571, 1079438, 2648511, 6506170, 16001256, 39393173, 97074140, 239419963, 590972968, 1459808862, 3608483107, 8925476591, 22090139751, 54702648393, 135533335933, 335967782916
Offset: 1

Views

Author

Gus Wiseman, Jul 31 2018

Keywords

Comments

Total number of leaves in all rooted identity trees with n nodes. - Andrew Howroyd, Aug 28 2018

Examples

			The a(6) = 12 rooted identity trees with a distinguished leaf:
(((((O))))),
(((O(o)))), (((o(O)))),
((O((o)))), ((o((O)))),
(O(((o)))), (o(((O)))),
((O)((o))), ((o)((O))),
(O(o(o))), (o(O(o))), (o(o(O))).
		

Crossrefs

Programs

  • Mathematica
    urit[n_]:=Join@@Table[Select[Union[Sort/@Tuples[urit/@ptn]],UnsameQ@@#&],{ptn,IntegerPartitions[n-1]}];
    Table[Sum[Length[Flatten[{t/.{}->1}]],{t,urit[n]}],{n,10}]
  • PARI
    WeighMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, (-1)^(i-1)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    seq(n)={my(v=[y]); for(n=2, n, v=concat([y], WeighMT(v))); apply(p -> subst(deriv(p), y, 1), v)} \\ Andrew Howroyd, Aug 28 2018

Formula

a(n) = Sum_{k=1, n} k*A055327(n, k). - Andrew Howroyd, Aug 28 2018

Extensions

Terms a(26) and beyond from Andrew Howroyd, Aug 28 2018

A317581 a(1) = 1; a(n > 1) = 1 + Sum_{d|n, d

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 0, 1, 2, 0, -2, 0, 2, 2, 1, 0, -2, 0, -2, 2, 2, 0, 4, 1, 2, 0, -2, 0, -6, 0, 0, 2, 2, 2, 7, 0, 2, 2, 4, 0, -6, 0, -2, -2, 2, 0, -4, 1, -2, 2, -2, 0, 4, 2, 4, 2, 2, 0, 16, 0, 2, -2, 1, 2, -6, 0, -2, 2, -6, 0, -12, 0, 2, -2, -2, 2, -6, 0, -4
Offset: 1

Views

Author

Gus Wiseman, Jul 31 2018

Keywords

Comments

If p is prime, a(p^k) = 0 if k is odd, 1 if k is even. - Robert Israel, Aug 01 2018

Crossrefs

Programs

  • Maple
    f:= n -> 1 + add(numtheory:-mobius(n/d)*procname(d),d=numtheory:-divisors(n) minus {n}):
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Aug 01 2018
  • Mathematica
    a[n_]:=1+Sum[MoebiusMu[n/d]*a[d],{d,Most[Divisors[n]]}];
    Array[a,100]
  • Python
    from sympy import mobius, divisors
    def A317581(n): return 1 + (0 if n == 1 else sum(mobius(n//d)*A317581(d) for d in divisors(n,generator=True) if d < n)) # Chai Wah Wu, Jan 14 2022

A351405 a(1) = 1; a(n+1) = Sum_{d|n} 2^(n/d - 1) * a(d).

Original entry on oeis.org

1, 1, 3, 7, 17, 33, 75, 139, 289, 557, 1119, 2143, 4341, 8437, 16843, 33343, 66573, 132109, 264243, 526387, 1052549, 2101617, 4202031, 8396335, 16792705, 33570193, 67137403, 134248191, 268492033, 536927489, 1073853307, 2147595131, 4295180241, 8590155085
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 10 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          add(2^((n-1)/d-1)*a(d), d=numtheory[divisors](n-1)))
        end:
    seq(a(n), n=1..34);  # Alois P. Heinz, Feb 10 2022
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[2^((n - 1)/d - 1) a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 34}]
    nmax = 34; A[] = 0; Do[A[x] = x (1 + Sum[2^(k - 1) A[x^k], {k, 1, nmax}]) + O[x]^(nmax + 1) //Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x * ( 1 + A(x) + 2 * A(x^2) + 4 * A(x^3) + ... + 2^(k-1) * A(x^k) + ... ).
G.f.: x * ( 1 + Sum_{n>=1} a(n) * x^n / (1 - 2 * x^n) ).
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Feb 18 2022

A307992 G.f. A(x) satisfies: A(x) = x + x^2 * (1 + A(x) + 2*A(x^2) + 3*A(x^3) + ...).

Original entry on oeis.org

1, 1, 1, 3, 4, 9, 9, 20, 16, 38, 28, 61, 39, 110, 52, 149, 84, 225, 101, 317, 120, 454, 175, 543, 198, 823, 243, 940, 327, 1259, 356, 1601, 387, 2051, 515, 2270, 623, 3114, 660, 3373, 829, 4381, 870, 5145, 913, 6264, 1245, 6683, 1292, 8776, 1404, 9477, 1724
Offset: 1

Views

Author

Ilya Gutkovskiy, May 09 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, signum(n), (m->
          m*add(a(d)/d, d=numtheory[divisors](m)))(n-2))
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, May 09 2019
  • Mathematica
    terms = 57; A[] = 0; Do[A[x] = x + x^2 (1 + Sum[k A[x^k], {k, 1, terms}]) + O[x]^(terms + 1) // Normal, terms + 1]; Rest[CoefficientList[A[x], x]]
    a[n_] := a[n] = SeriesCoefficient[x + x^2 (1 + Sum[a[k] x^k/(1 - x^k)^2, {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 57}]
    a[n_] := a[n] = Sum[d a[(n - 2)/d], {d, Divisors[n - 2]}]; a[1] = a[2] = 1; Table[a[n], {n, 1, 57}]

Formula

G.f.: x + x^2 * (1 + Sum_{n>=1} a(n)*x^n/(1 - x^n)^2).
a(1) = a(2) = 1; a(n+2) = Sum_{d|n} d*a(n/d).

A332753 G.f. A(x) satisfies: A(x) = x * (1 + A(x) + A(x^2)^2 + A(x^3)^3 + ...).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 7, 8, 12, 12, 22, 22, 32, 38, 56, 56, 90, 90, 132, 150, 204, 204, 326, 327, 437, 489, 677, 677, 994, 994, 1361, 1499, 1943, 1958, 2889, 2889, 3733, 4078, 5445, 5445, 7549, 7549, 9969, 10853, 13733, 13733, 19329, 19330, 24577, 26404, 34080
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 22 2020

Keywords

Comments

If n is prime or 1 then a(n) = a(n+1).

Crossrefs

Programs

  • Mathematica
    terms = 53; A[] = 0; Do[A[x] = x (1 + Sum[A[x^k]^k, {k, 1, terms}]) + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] // Rest

A338749 a(0) = 1; for n > 0, a(n) = n * Sum_{d|n, d < n} a(d - 1) / d.

Original entry on oeis.org

1, 0, 2, 3, 4, 5, 10, 7, 14, 15, 18, 11, 39, 13, 34, 37, 42, 17, 73, 19, 81, 65, 58, 23, 121, 45, 104, 87, 115, 29, 212, 31, 158, 109, 118, 113, 240, 37, 184, 182, 235, 41, 366, 43, 279, 283, 162, 47, 399, 119, 407, 211, 337, 53, 478, 189, 453, 314, 288, 59, 639
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = n DivisorSum[n, a[# - 1]/# &, # < n &]; Table[a[n], {n, 0, 60}]
    nmax = 60; A[] = 0; Do[A[x] = 1 + Sum[k x^k A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + 2 * x^2 * A(x^2) + 3 * x^3 * A(x^3) + 4 * x^4 * A(x^4) + ...
Showing 1-10 of 10 results.