cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A127170 Triangle read by rows: T(n,k) is the number of divisors of n that are divisible by k, with 1 <= k <= n.

Original entry on oeis.org

1, 2, 1, 2, 0, 1, 3, 2, 0, 1, 2, 0, 0, 0, 1, 4, 2, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 4, 3, 0, 2, 0, 0, 0, 1, 3, 0, 2, 0, 0, 0, 0, 0, 1, 4, 2, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 4, 3, 2, 0, 2, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 06 2007

Keywords

Comments

Column k lists the terms of A000005 interleaved with k - 1 zeros.
Eigensequence of the triangle = A007557; i.e., sequence A007557 shifts to the left upon multiplication by A127170. - Gary W. Adamson, Apr 27 2009

Examples

			First 10 rows of the triangle:
  1;
  2, 1;
  2, 0, 1;
  3, 2, 0, 1;
  2, 0, 0, 0, 1;
  4, 2, 2, 0, 0, 1;
  2, 0, 0, 0, 0, 0, 1;
  4, 3, 0, 2, 0, 0, 0, 1;
  3, 0, 2, 0, 0, 0, 0, 0, 1;
  4, 2, 0, 0, 2, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Programs

Formula

A007429(n) = Sum_{i=1..n} i*a(i).
T(n,k) = A000005(n/k), if k divides n, otherwise 0, with n >= 1 and 1 <= k <= n. - Omar E. Pol, Apr 01 2015

Extensions

8 terms taken from Example section and then corrected in Data section by Omar E. Pol, Mar 30 2015
Extended beyond a(21) by Omar E. Pol, Apr 01 2015
New name (which was a comment dated Mar 30 2015) from Omar E. Pol, Feb 16 2022

A319133 a(1) = a(2) = 1; for n > 2, a(n+2) = Sum_{d|n} tau(n/d)*a(d), where tau = number of divisors (A000005).

Original entry on oeis.org

1, 1, 1, 3, 3, 8, 5, 16, 7, 29, 12, 41, 14, 76, 16, 92, 28, 142, 30, 185, 32, 268, 48, 298, 50, 466, 59, 500, 80, 683, 82, 817, 84, 1072, 114, 1134, 134, 1583, 136, 1649, 170, 2176, 172, 2444, 174, 3032, 239, 3134, 241, 4174, 254, 4353, 316, 5343, 318, 5815, 352, 7121, 418, 7287, 420, 9357, 422, 9527, 525
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = Sum[DivisorSigma[0, (n - 2)/d] a[d], {d, Divisors[n - 2]}]; Table[a[n], {n, 65}]
  • PARI
    A319133(n) = if(n<=2,1,sumdiv(n-2,d,numdiv((n-2)/d)*A319133(d))); \\ (non-memoized implementation) - Antti Karttunen, Sep 11 2018
    
  • PARI
    \\ Faster implementation:
    up_to = 4240;
    A319133list(up_to) = { my(u=vector(up_to)); u[1] = u[2] = 1; for(n=3, up_to, u[n] = sumdiv(n-2,d,numdiv((n-2)/d)*u[d])); (u); };
    v319133 = A319133list(up_to);
    A319133(n) = v319133[n]; \\ Antti Karttunen, Sep 11 2018

A307793 a(1) = 1; a(n+1) = Sum_{d|n} tau(d)*a(d), where tau = number of divisors (A000005).

Original entry on oeis.org

1, 1, 3, 7, 24, 49, 205, 411, 1668, 5011, 20095, 40191, 241372, 482745, 1931393, 7725627, 38629803, 77259607, 463562851, 927125703, 5562774334, 22251097753, 89004431205, 178008862411, 1424071142304, 4272213426961, 17088854190591, 68355416767375, 410132502535664, 820265005071329
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 29 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[DivisorSigma[0, d] a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 30}]
    a[n_] := a[n] = SeriesCoefficient[x (1 + Sum[DivisorSigma[0, k] a[k] x^k/(1 - x^k), {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 30}]
  • PARI
    a(n) = if (n==1, 1, sumdiv(n-1, d, numdiv(d)*a(d))); \\ Michel Marcus, Apr 29 2019

Formula

G.f.: x * (1 + Sum_{n>=1} tau(n)*a(n)*x^n/(1 - x^n)).
L.g.f.: -log(Product_{i>=1, j>=1} (1 - x^(i*j))^(a(i*j)/(i*j))) = Sum_{n>=1} a(n+1)*x^n/n.

A307967 G.f. A(x) satisfies: A(x) = x + x^2 + x^3 * (1 + Sum_{i>=1} Sum_{j>=1} A(x^(i*j))).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 6, 5, 11, 8, 14, 16, 20, 16, 37, 22, 34, 49, 44, 36, 90, 46, 73, 108, 80, 75, 181, 89, 121, 210, 151, 123, 334, 153, 197, 368, 227, 219, 567, 229, 313, 613, 365, 315, 871, 367, 461, 986, 519, 463, 1355, 534, 660, 1429, 756, 662, 1960, 794, 940, 2054
Offset: 1

Views

Author

Ilya Gutkovskiy, May 11 2019

Keywords

Comments

Shifts 3 places left when inverse Moebius transform applied twice.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[DivisorSigma[0, (n - 3)/d] a[d], {d, Divisors[n - 3]}]; a[1] = a[2] = a[3] = 1; Table[a[n], {n, 1, 60}]

Formula

a(1) = a(2) = a(3) = 1; a(n+3) = Sum_{d|n} tau(n/d)*a(d), where tau = number of divisors (A000005).

A307982 G.f. A(x) satisfies: A(x) = x + x^2 + x^3 + x^4 * (1 + Sum_{i>=1} Sum_{j>=1} A(x^(i*j))).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 6, 3, 11, 5, 15, 8, 19, 7, 36, 10, 31, 15, 60, 12, 56, 17, 97, 24, 72, 19, 170, 29, 94, 32, 229, 31, 156, 34, 334, 47, 182, 46, 471, 49, 218, 68, 658, 51, 314, 70, 797, 84, 354, 72, 1173, 93, 437, 98, 1353, 95, 576, 114, 1792, 131, 640, 116, 2243, 133
Offset: 1

Views

Author

Ilya Gutkovskiy, May 11 2019

Keywords

Comments

Shifts 4 places left when inverse Moebius transform applied twice.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[DivisorSigma[0, (n - 4)/d] a[d], {d, Divisors[n - 4]}]; a[1] = a[2] = a[3] = a[4] = 1; Table[a[n], {n, 1, 65}]

Formula

a(1) = ... = a(4) = 1; a(n+4) = Sum_{d|n} tau(n/d)*a(d), where tau = number of divisors (A000005).

A308083 G.f. A(x) satisfies: A(x) = x + x^2 + x^3 + x^4 + x^5 * (1 + Sum_{i>=1} Sum_{j>=1} A(x^(i*j))).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 6, 3, 9, 5, 12, 11, 11, 11, 22, 14, 23, 19, 29, 24, 41, 25, 40, 41, 48, 43, 66, 45, 71, 67, 86, 68, 95, 73, 113, 110, 118, 107, 157, 115, 162, 148, 182, 159, 225, 164, 235, 229, 247, 227, 296, 244, 328, 297, 357, 298, 413, 352, 452, 409, 436, 415, 575
Offset: 1

Views

Author

Ilya Gutkovskiy, May 11 2019

Keywords

Comments

Shifts 5 places left when inverse Moebius transform applied twice.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[DivisorSigma[0, (n - 5)/d] a[d], {d, Divisors[n - 5]}]; a[1] = a[2] = a[3] = a[4] = a[5] = 1; Table[a[n], {n, 1, 65}]

Formula

a(1) = ... = a(5) = 1; a(n+5) = Sum_{d|n} tau(n/d)*a(d), where tau = number of divisors (A000005).

A307817 a(1) = 1; a(n+1) = Sum_{d|n} sigma(n/d)*a(d), where sigma = sum of divisors (A000203).

Original entry on oeis.org

1, 1, 4, 8, 18, 24, 52, 60, 106, 135, 213, 225, 397, 411, 599, 719, 1001, 1019, 1533, 1553, 2192, 2464, 3151, 3175, 4502, 4641, 5888, 6404, 8145, 8175, 11040, 11072, 13863, 14811, 17886, 18390, 23723, 23761, 28440, 30140, 36650, 36692, 45952, 45996, 55095, 58535, 68084, 68132, 83720, 84193
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[DivisorSigma[1, (n - 1)/d] a[d] , {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 50}]
    terms = 50; A[] = 0; Do[A[x] = x (1 + Sum[DivisorSigma[1, k]  A[x^k], {k, 1, terms}]) + O[x]^(terms + 1) // Normal, terms + 1]; Rest[CoefficientList[A[x], x]]
    a[n_] := a[n] = SeriesCoefficient[x (1 + Sum[Sum[DivisorSigma[1, i] a[j] x^(i j), {j, 1, n - 1}], {i, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 50}]
  • PARI
    lista(nn) = { my(va=vector(nn)); va[1] = 1; for (n=2, nn, va[n] = sumdiv(n-1, d, sigma((n-1)/d)*va[d])); va;} \\ Michel Marcus, Apr 30 2019

Formula

G.f. A(x) satisfies: A(x) = x * (1 + Sum_{k>=1} sigma(k)*A(x^k)).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + Sum_{i>=1} Sum_{j>=1} sigma(i)*a(j)*x^(i*j)).

A325211 a(1) = 1; a(n) = Sum_{d|n, dA000005.

Original entry on oeis.org

1, 2, 2, 7, 2, 12, 2, 24, 7, 12, 2, 58, 2, 12, 12, 82, 2, 58, 2, 58, 12, 12, 2, 256, 7, 12, 24, 58, 2, 104, 2, 280, 12, 12, 12, 355, 2, 12, 12, 256, 2, 104, 2, 58, 58, 12, 2, 1072, 7, 58, 12, 58, 2, 256, 12, 256, 12, 12, 2, 652, 2, 12, 58, 956, 12, 104, 2, 58, 12, 104
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, n, Sum[If[d < n, DivisorSigma[0, n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 70}]
    nmax = 70; A[] = 0; Do[A[x] = x + Sum[DivisorSigma[0, k] A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n] = sumdiv(n, d, v[d]*numdiv(n/d))); v} \\ Andrew Howroyd, Sep 05 2019

Formula

G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} tau(k) * A(x^k).
a(p) = 2, where p is prime.
Showing 1-8 of 8 results.