cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A332791 a(1) = 1; a(n+1) = Sum_{d|n} phi(d) * a(d).

Original entry on oeis.org

1, 1, 2, 5, 12, 49, 104, 625, 2512, 15077, 60358, 603581, 2414438, 28973257, 173840168, 1390721397, 11125773688, 178012379009, 1068074289230, 19225337206141, 153802697709496, 1845632372514581, 18456323725749392, 406039121966486625, 3248312975734309938
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 24 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Sum[EulerPhi[d] a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 25}]
    a[1] = 1; a[n_] := a[n] = Sum[a[(n - 1)/GCD[n - 1, k]], {k, 1, n - 1}]; Table[a[n], {n, 1, 25}]

Formula

a(1) = 1; a(n+1) = Sum_{k=1..n} a(n/gcd(n, k)).
a(n) = Sum_{k=1..n} a(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A307794 a(1) = 1; a(n+1) = Sum_{d|n} sigma(d)*a(d), where sigma = sum of divisors (A000203).

Original entry on oeis.org

1, 1, 4, 17, 123, 739, 8888, 71105, 1066698, 13867091, 249608380, 2995300561, 83868424715, 1174157946011, 28179790775372, 676314978609683, 20965764337966871, 377383758083403679, 14717966565266619443, 294359331305332388861, 12363091914824209940661, 395618941274374718172273
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 29 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[DivisorSigma[1, d] a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 22}]
    a[n_] := a[n] = SeriesCoefficient[x (1 + Sum[DivisorSigma[1, k] a[k] x^k/(1 - x^k), {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 22}]
  • PARI
    a(n) = if (n==1, 1, sumdiv(n-1, d, sigma(d)*a(d))); \\ Michel Marcus, Apr 29 2019

Formula

G.f.: x * (1 + Sum_{n>=1} sigma(n)*a(n)*x^n/(1 - x^n)).
L.g.f.: -log(Product_{i>=1, j>=1} (1 - x^(i*j))^(a(i*j)/j)) = Sum_{n>=1} a(n+1)*x^n/n.
Showing 1-2 of 2 results.