cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A332792 a(1) = 1; a(n) = Sum_{d|n, d < n} phi(d) * a(d).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 6, 3, 6, 1, 16, 1, 8, 7, 30, 1, 30, 1, 34, 9, 12, 1, 104, 5, 14, 21, 60, 1, 96, 1, 270, 13, 18, 11, 278, 1, 20, 15, 330, 1, 174, 1, 136, 81, 24, 1, 1176, 7, 130, 19, 186, 1, 588, 15, 804, 21, 30, 1, 1204, 1, 32, 135, 4590, 17, 402, 1, 310, 25, 348
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 24 2020

Keywords

Crossrefs

Cf. A000010, A006874, A008578 (positions of 1's), A038045, A057660, A332791.

Programs

  • Mathematica
    a[1] = 1; a[n_] := Sum[If[d < n, EulerPhi[d] a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
    a[1] = 1; a[n_] := a[n] = Sum[If[GCD[n, k] > 1, a[n/GCD[n, k]], 0], {k, 1, n}]; Table[a[n], {n, 1, 70}]
  • PARI
    up_to = 20000;
    A332792list(n) = { my(v=vector(n)); v[1] = 1; for(n=2, #v, v[n] = sumdiv(n, d, if(d==n, 0, v[d]*eulerphi(d)))); (v); };
    v332792 = A332792list(up_to);
    A332792(n) = v332792[n]; \\ Antti Karttunen, Jan 22 2025

Formula

a(1) = 1; a(n) = Sum_{k=1..n, gcd(n, k) > 1} a(n/gcd(n, k)).

A333613 a(1) = 1; thereafter a(n) = Sum_{k = 1..n} a(k/gcd(n,k)).

Original entry on oeis.org

1, 2, 4, 7, 15, 21, 51, 78, 158, 230, 568, 661, 1797, 2595, 5117, 7789, 19095, 21702, 59892, 81801, 171329, 258028, 630942, 713093, 1887828, 2776798, 5727675, 8335692, 20702970, 21420664, 62826604, 92041835, 189376593, 281410640, 656577018, 742729123, 2087788417
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 28 2020

Keywords

Crossrefs

Programs

  • Maple
    A333613:= proc(n) option remember;
    if n<3 then n;
    else add( A333613(lcm(n,j)/n), j = 1..n);
    end if; end proc;
    seq(A333613(n), n=1..40); # G. C. Greubel, Mar 08 2021
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[a[k/GCD[n, k]], {k, n}]; Table[a[n], {n, 37}]
    a[1] = 1; a[n_] := a[n] = Sum[Sum[If[GCD[k, d] == 1, a[k], 0], {k, d}], {d, Divisors[n]}]; Table[a[n], {n, 37}]
  • Sage
    @CachedFunction
    def A333613(n): return 1 if n==1 else sum( A333613(lcm(n, j)/n) for j in (1..n) )
    [A333613(n) for n in (1..40)] # G. C. Greubel, Mar 08 2021

Formula

a(1) = 1; a(n) = Sum_{k = 1..n} a(lcm(n, k)/n).
a(1) = 1; a(n) = Sum_{d|n} Sum_{k = 1..d, gcd(d, k) = 1} a(k).

A341639 a(1) = 1; a(n+1) = Sum_{d|n} phi(d) * a(d) * a(n/d).

Original entry on oeis.org

1, 1, 2, 6, 19, 95, 291, 2037, 10203, 71429, 357240, 3929640, 19648533, 255430929, 1788018540, 16092167088, 144829514049, 2462101738833, 17234712244012, 327459532636228, 2947135794083881, 38312765323095109, 421440418557975839, 9693129626833444297, 87238166641520673597
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[EulerPhi[d] a[d] a[(n - 1)/d], {d, Divisors[n - 1]}]; Table[a[n], {n, 25}]
    a[1] = 1; a[n_] := a[n] = Sum[a[GCD[n - 1, k]] a[(n - 1)/GCD[n - 1, k]], {k, n - 1}]; Table[a[n], {n, 25}]

Formula

a(1) = 1; a(n+1) = Sum_{k=1..n} a(gcd(n,k)) * a(n/gcd(n,k)).
Showing 1-3 of 3 results.