cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A134577 A127170 * A127648.

Original entry on oeis.org

1, 2, 2, 2, 0, 3, 3, 4, 0, 4, 2, 0, 0, 0, 5, 4, 4, 6, 0, 0, 6, 2, 0, 0, 0, 0, 0, 7, 4, 6, 0, 8, 0, 0, 0, 8, 3, 0, 6, 0, 0, 0, 0, 0, 9, 4, 4, 0, 0, 10, 0, 0, 0, 0, 10
Offset: 1

Views

Author

Gary W. Adamson, Nov 02 2007

Keywords

Comments

Row sums = A007429: (1, 4, 5, 11, 7, 20, 9, 26, ...).
Left border = A000005: (1, 2, 2, 3, 2, 4, 2, ...).
A134577 * [1/1, 1/2, 1/3, ...] = A007425: (1, 3, 3, 6, 3, 9, 3, 10, ...).
A134577 * [1, 2, 3, ...] = A007433: (1, 6, 11, 27, 27, 66, ...).
A134577 * A000005 = A034761: (1, 6, 8, 23, 12, 48, ...).

Examples

			First few rows of the triangle:
  1;
  2, 2;
  2, 0, 3;
  3, 4, 0, 4;
  2, 0, 0, 0, 5
  4, 4, 6, 0, 0, 6;
  2, 0, 0, 0, 0, 0, 7;
  4, 6, 0, 8, 0, 0, 0, 8;
  ...
		

Crossrefs

Formula

A127372 Triangle read by rows: A127170 * A054521 as infinite lower triangular matrices.

Original entry on oeis.org

1, 3, 0, 3, 1, 0, 6, 0, 1, 0, 3, 1, 1, 1, 0, 9, 2, 0, 0, 1, 0, 3, 1, 1, 1, 1, 1, 0, 10, 0, 3, 0, 1, 0, 1, 0, 6, 3, 0, 1, 1, 0, 1, 1, 0, 9, 2, 3, 2, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 12 2007

Keywords

Comments

Left column = A007425, (tau_3(n)): 1, 3, 3, 6, 3, 9, ... Row sums = sigma(n), A000203: 1, 3, 4, 7, 6, 12, ...

Examples

			First few rows of the triangle:
   1;
   3, 0;
   3, 1, 0;
   6, 0, 1, 0;
   3, 1, 1, 1, 0;
   9, 2, 0, 0, 1, 0;
   3, 1, 1, 1, 1, 1, 0;
  10, 0, 3, 0, 1, 0, 1, 0;
  ...
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Jul 11 2008

A007425 d_3(n), or tau_3(n), the number of ordered factorizations of n as n = r s t.

Original entry on oeis.org

1, 3, 3, 6, 3, 9, 3, 10, 6, 9, 3, 18, 3, 9, 9, 15, 3, 18, 3, 18, 9, 9, 3, 30, 6, 9, 10, 18, 3, 27, 3, 21, 9, 9, 9, 36, 3, 9, 9, 30, 3, 27, 3, 18, 18, 9, 3, 45, 6, 18, 9, 18, 3, 30, 9, 30, 9, 9, 3, 54, 3, 9, 18, 28, 9, 27, 3, 18, 9, 27, 3, 60, 3, 9, 18, 18, 9, 27, 3, 45, 15, 9, 3, 54, 9, 9, 9, 30, 3
Offset: 1

Views

Author

N. J. A. Sloane, May 24 1994

Keywords

Comments

Let n = Product p_i^e_i. Tau (A000005) is tau_2, this sequence is tau_3, A007426 is tau_4, where tau_k(n) (also written as d_k(n)) = Product_i binomial(k-1+e_i, k-1) is the k-th Piltz function. It gives the number of ordered factorizations of n as a product of k terms. - Len Smiley
Inverse Möbius transform applied twice to all 1's sequence.
A085782 gives the range of values of this sequence. - Matthew Vandermast, Jul 12 2004
Appears to equal the number of plane partitions of n that can be extended in exactly 3 ways to a plane partition of n+1 by adding one element. - Wouter Meeussen, Sep 11 2004
Number of divisors of n's divisors. - Lekraj Beedassy, Sep 07 2004
Number of plane partitions of n that can be extended in exactly 3 ways to a plane partition of n+1 by adding one element. If the partition is not a box, there is a minimal i+j where b_{i,j} != b_{1,1} and an element can be added there. - Franklin T. Adams-Watters, Jun 14 2006
Equals row sums of A127170. - Gary W. Adamson, May 20 2007
Equals A134577 * [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, Nov 02 2007
Equals row sums of triangle A143354. - Gary W. Adamson, Aug 10 2008
a(n) is congruent to 1 (mod 3) if n is a perfect cube, otherwise a(n) is congruent to 0 (mod 3). - Geoffrey Critzer, Mar 20 2015
Also row sums of A195050. - Omar E. Pol, Nov 26 2015
Number of 3D grids of n congruent boxes with three different edge lengths, in a box, modulo rotation (cf. A034836 for cubes instead of boxes and A140773 for boxes with two different edge lengths; cf. A000005 for the 2D case). - Manfred Boergens, Apr 06 2021
Number of ordered pairs of divisors of n, (d1,d2) with d1<=d2, such that d1|d2. - Wesley Ivan Hurt, Mar 22 2022

Examples

			a(6) = 9; the divisors of 6 are {1,2,3,6} and the numbers of divisors of these divisors are 1, 2, 2, and 4. Adding them, we get 9 as a result.
Also, since 6 is a squarefree number, the formula from Herrero can be used to obtain the result: a(6) = 3^omega(6) = 3^2 = 9. - _Wesley Ivan Hurt_, May 30 2014
		

References

  • M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 239.
  • A. Ivic, The Riemann Zeta-Function, Wiley, NY, 1985, see p. xv.
  • Paul J. McCarthy, Introduction to Arithmetical Functions, Springer, 1986.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000005 (Mobius transform), A007426 (inverse Mobius transform), A061201 (partial sums), A127270, A143354, A027750, A007428 (Dirichlet inverse), A175596.
Column k=3 of A077592.
Additional cross-references mentioned in a comment: A034836, A038548, A140733.

Programs

  • Haskell
    a007425 = sum . map a000005 . a027750_row
    -- Reinhard Zumkeller, Feb 16 2012
    
  • Maple
    f:=proc(n) local t1,i,j,k; t1:=0; for i from 1 to n do for j from 1 to n do for k from 1 to n do if i*j*k = n then t1:=t1+1; fi; od: od: od: t1; end;
    A007425 := proc(n) local e,j; e := ifactors(n)[2]: product(binomial(2+e[j][2],2), j=1..nops(e)); end; # Len Smiley
  • Mathematica
    f[n_] := Plus @@ DivisorSigma[0, Divisors[n]]; Table[ f[n], {n, 90}] (* Robert G. Wilson v, Sep 13 2004 *)
    SetAttributes[tau, Listable]; tau[1, n_] := 1; tau[k_, n_] := Plus @@ (tau[k-1, Divisors[n]]); Table[tau[3, n], {n, 100}] (* Enrique Pérez Herrero, Nov 08 2009 *)
    Table[Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 50}] (* Wesley Ivan Hurt, May 30 2014 *)
    f[p_, e_] := (e+1)*(e+2)/2;  a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 27 2019 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,k,numdiv(k)),","))
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X)^3)[n]) \\ Ralf Stephan
    
  • PARI
    a(n)=sumdiv(n, x, sumdiv(x, y, 1 )) \\ Joerg Arndt, Oct 07 2012
    
  • PARI
    a(n)=sumdivmult(n,k,numdiv(k)) \\ Charles R Greathouse IV, Aug 30 2013
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^3)[n]), ", ")) \\ Vaclav Kotesovec, May 06 2025
    
  • Python
    from math import prod, comb
    from sympy import factorint
    def A007425(n): return prod(comb(2+e,2) for e in factorint(n).values()) # Chai Wah Wu, Dec 22 2024

Formula

a(n) = Sum_{d dividing n} tau(d). - Benoit Cloitre, Apr 04 2002
G.f.: Sum_{k>=1} tau(k)*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
For n = Product p_i^e_i, a(n) = Product_i A000217(e_i + 1). - Lekraj Beedassy, Sep 07 2004
Dirichlet g.f.: zeta^3(s).
From Enrique Pérez Herrero, Nov 03 2009: (Start)
a(n^2) = tau_3(n^2) = tau_2(n^2)*tau_2(n), where tau_2 is A000005 and tau_3 is this sequence.
a(s) = 3^omega(s), if s>1 is squarefree (A005117) and omega(s) is: A001221. (End)
From Enrique Pérez Herrero, Nov 08 2009: (Start)
a(n) = tau_3(n) = tau_2(n)*tau_2(n*rad(n))/tau_2(rad(n)), where rad(n) is A007947 and tau_2(n) is A000005.
tau_3(n) >= 2*tau_2(n) - 1.
tau_3(n) <= tau_2(n)^2 + tau_2(n)-1. (End)
From Vladimir Shevelev, Dec 22 2017: (Start)
a(n) = sqrt(Sum_{d|n}(tau(d))^3);
a(n) = |Sum_{d|n} A008836(d)*(tau(d))^2|.
The first formula follows from the first Cloitre formula and a Liouville formula; the second formula follows from our analogous formula (cf. our comment in Formula section of A000005). (End)
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(tau(k)/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 23 2018

A007557 Shifts left when inverse Moebius transform applied twice.

Original entry on oeis.org

1, 1, 3, 5, 10, 12, 24, 26, 43, 52, 78, 80, 133, 135, 189, 219, 295, 297, 428, 430, 584, 642, 804, 806, 1100, 1123, 1395, 1494, 1856, 1858, 2428, 2430, 2977, 3143, 3739, 3811, 4790, 4792, 5654, 5930, 7072, 7074, 8656
Offset: 1

Views

Author

Keywords

Comments

Equals eigensequence of triangle A127170 (the square of the inverse Mobius transform). - Gary W. Adamson, Apr 27 2009

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[ DivisorSigma[0, (n - 1)/d]*a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 43}] (* Jean-François Alcover, Dec 12 2011, after Vladeta Jovovic *)

Formula

a(n+1) = Sum_{d divides n} tau(n/d)*a(d). - Vladeta Jovovic, Jan 24 2003
From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x * (1 + Sum_{i>=1} Sum_{j>=1} A(x^(i*j))).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + Sum_{i>=1} Sum_{j>=1} a(i)*x^(i*j)/(1 - x^(i*j))). (End)

Extensions

More terms from Vladeta Jovovic, Jan 24 2003

A127172 Cube of A051731.

Original entry on oeis.org

1, 3, 1, 3, 0, 1, 6, 3, 0, 1, 3, 0, 0, 0, 1, 9, 3, 3, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 10, 6, 0, 3, 0, 0, 0, 1, 6, 0, 3, 0, 0, 0, 0, 0, 1, 9, 3, 0, 0, 0, 3, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 06 2007

Keywords

Comments

Nonzero terms in every column = A007425: (1, 3, 3, 6, 3, 9, 3, ...).
Row sums = A007426: (1, 4, 4, 20, 4, 16, ...).
A127172 * mu(n) = d(n); or A127172 * A008683 = A000005.
A127172 * d(n) = tau_5(n); or A127172 * A000005 = A061200.
A127172 * phi(n) = A007429: (1, 4, 5, 11, 7, 20, ...); or: A127172 * A000010 = A007429.
Note that A051731 * d(n) = row sums of A127172; or A051731 * A000005 = A007425.
Also, A126988 * mu(n) = phi(n); or A126988 * A008683 = A000010.
A126988 * phi(n) = A018804: (1, 3, 5, 8, 9, 15, ...); = A127170 * mu(n).

Examples

			First few rows of the triangle:
   1;
   3, 1;
   3, 0, 1;
   6, 3, 0, 1;
   3, 0, 0, 0, 1;
   9, 3, 3, 0, 0, 1;
   3, 0, 0, 0, 0, 0, 1;
  10, 6, 0, 3, 0, 0, 0, 1;
   6, 0, 3, 0, 0, 0, 0, 0, 1;
   9, 3, 0, 0, 3, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

Cube of A051731 A007425: (1, 3, 3, 6, 3, 9, 3, ...) in every column k, interspersed with (k-1) zeros.

A195050 Square array T(n,k) read by antidiagonals in which column k lists the number of divisors of n that are divisible by k.

Original entry on oeis.org

1, 2, 0, 2, 1, 0, 3, 0, 0, 0, 2, 2, 1, 0, 0, 4, 0, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Omar E. Pol, Oct 18 2011

Keywords

Comments

It appears that the sequence formed by starting with an initial set of k-1 zeros followed by the members of A000005, with k-1 zeros between every one of them, can be defined as "the number of divisors of n that are divisible by k", (k >= 1). For example: if k = 1 we have A000005 by definition; if k = 2 we have A183063. Note that if k >= 3 the sequences are not included in the OEIS because the usual OEIS policy is not to include sequences with interspersed zeros. A183063 is an exception.
It appears that the illustration of initial terms of column k can be represented by a general diagram in which the period of the smallest curve is 2*k, hence the distance between consecutive two nodes is equal to k. (For k = 1 see the link.)
Row sums = A007425. - Geoffrey Critzer, Feb 07 2015

Examples

			Array begins:
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
3, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,...
2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,...
4, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0,...
2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,...
4, 3, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0,...
3, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0,...
4, 2, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0,...
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,...
6, 4, 3, 2, 0, 2, 0, 0, 0, 0, 0, 1,...
		

Crossrefs

Columns (1,2): A000005, A183063.

Programs

  • Mathematica
    (* returns square array *)
    nn = 20; Transpose[Table[Table[DirichletConvolve[1, Floor[n/k] - Floor[(n - 1)/k], n, m], {m, 1,nn}], {k, 1, nn}]] // Grid (* Geoffrey Critzer, Feb 07 2015 *)

Formula

Dirichlet generating function of column k: zeta(s)*Sum_{n>=1}1/(k*n)^s. - Geoffrey Critzer, Feb 07 2015

A134699 Triangle read by rows: A051731^2 * A000012.

Original entry on oeis.org

1, 3, 1, 3, 1, 1, 6, 3, 1, 1, 3, 1, 1, 1, 1, 9, 5, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 10, 6, 3, 3, 1, 1, 1, 1, 6, 3, 3, 1, 1, 1, 1, 1, 1, 9, 5, 3, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 18, 12, 8, 5, 3, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 06 2007

Keywords

Comments

Left column = A007425.
Row sums = A007429: (1, 4, 5, 11, 7, 20, ...).

Examples

			First few rows of the triangle:
   1;
   3, 1;
   3, 1, 1;
   6, 3, 1, 1;
   3, 1, 1, 1, 1;
   9, 5, 3, 1, 1, 1;
   3, 1, 1, 1, 1, 1, 1;
  10, 6, 3, 3, 1, 1, 1, 1;
  ...
		

Crossrefs

Formula

A051731^2 * A000012 = A127170 * A000012, as infinite lower triangular matrices.

Extensions

More terms from Jinyuan Wang, Apr 29 2025

A134700 Triangle read by rows: A000012 * A051731^2.

Original entry on oeis.org

1, 3, 1, 5, 1, 1, 8, 3, 1, 1, 10, 3, 1, 1, 1, 14, 5, 3, 1, 1, 1, 16, 5, 3, 1, 1, 1, 1, 20, 8, 3, 3, 1, 1, 1, 1, 23, 8, 5, 3, 1, 1, 1, 1, 1, 27, 10, 5, 3, 3, 1, 1, 1, 1, 1, 29, 10, 5, 3, 3, 1, 1, 1, 1, 1, 1, 35, 14, 8, 5, 3, 3, 1, 1, 1, 1, 1, 1, 37, 14, 8, 5, 3, 3, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 07 2007

Keywords

Comments

Left column = A006218.
Row sums = A061201: (1, 4, 7, 13, 16, 25, 28, ...).

Examples

			First few rows of the triangle:
   1;
   3, 1;
   5, 1, 1;
   8, 3, 1, 1;
  10, 3, 1, 1, 1;
  14, 5, 3, 1, 1, 1;
  16, 5, 3, 1, 1, 1, 1;
  20, 8, 3, 3, 1, 1, 1, 1;
  23, 8, 5, 3, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Programs

  • PARI
    row(n) = my(m=matrix(n,n,i,j,!(i%j))); vector(n, k, sum(i=1, n, (m^2)[i, k])); \\ Michel Marcus, Apr 30 2025

Formula

Extensions

a(45) = 1, a(46) = 27 corrected and more terms from Georg Fischer, Jun 05 2023
More terms from Michel Marcus, Apr 30 2025
Showing 1-8 of 8 results.