A307793 a(1) = 1; a(n+1) = Sum_{d|n} tau(d)*a(d), where tau = number of divisors (A000005).
1, 1, 3, 7, 24, 49, 205, 411, 1668, 5011, 20095, 40191, 241372, 482745, 1931393, 7725627, 38629803, 77259607, 463562851, 927125703, 5562774334, 22251097753, 89004431205, 178008862411, 1424071142304, 4272213426961, 17088854190591, 68355416767375, 410132502535664, 820265005071329
Offset: 1
Keywords
Programs
-
Mathematica
a[n_] := a[n] = Sum[DivisorSigma[0, d] a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 30}] a[n_] := a[n] = SeriesCoefficient[x (1 + Sum[DivisorSigma[0, k] a[k] x^k/(1 - x^k), {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 30}]
-
PARI
a(n) = if (n==1, 1, sumdiv(n-1, d, numdiv(d)*a(d))); \\ Michel Marcus, Apr 29 2019
Formula
G.f.: x * (1 + Sum_{n>=1} tau(n)*a(n)*x^n/(1 - x^n)).
L.g.f.: -log(Product_{i>=1, j>=1} (1 - x^(i*j))^(a(i*j)/(i*j))) = Sum_{n>=1} a(n+1)*x^n/n.
Comments