A317583 Number of multiset partitions of normal multisets of size n such that all blocks have the same size.
1, 4, 8, 30, 32, 342, 128, 3754, 11360, 56138, 2048, 3834670, 8192, 27528494, 577439424, 2681075210, 131072, 238060300946, 524288, 11045144602614, 115488471132032, 49840258213638, 8388608, 152185891301461434, 140102945910265344, 124260001149229146, 85092642310351607968
Offset: 1
Keywords
Examples
The a(3) = 8 multiset partitions: {{1,1,1}} {{1,1,2}} {{1,2,2}} {{1,2,3}} {{1},{1},{1}} {{1},{1},{2}} {{1},{2},{2}} {{1},{2},{3}}
Links
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; Table[Length[Select[Join@@mps/@allnorm[n],SameQ@@Length/@#&]],{n,8}]
-
PARI
\\ here U(n,m) gives number for m blocks of size n. U(n,m)={sum(k=1, n*m, binomial(binomial(k+n-1, n)+m-1, m)*sum(r=k, n*m, binomial(r, k)*(-1)^(r-k)) )} a(n)={sumdiv(n, d, U(d, n/d))} \\ Andrew Howroyd, Sep 15 2018
Formula
a(p) = 2^p for prime p. - Andrew Howroyd, Sep 15 2018
a(n) = Sum_{d|n} A331315(n/d, d). - Andrew Howroyd, Jan 15 2020
Extensions
Terms a(9) and beyond from Andrew Howroyd, Sep 15 2018
Comments