cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317583 Number of multiset partitions of normal multisets of size n such that all blocks have the same size.

Original entry on oeis.org

1, 4, 8, 30, 32, 342, 128, 3754, 11360, 56138, 2048, 3834670, 8192, 27528494, 577439424, 2681075210, 131072, 238060300946, 524288, 11045144602614, 115488471132032, 49840258213638, 8388608, 152185891301461434, 140102945910265344, 124260001149229146, 85092642310351607968
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.
a(n) is the number of nonnegative integer matrices with total sum n, nonzero rows and each column with the same sum with columns in nonincreasing lexicographic order. - Andrew Howroyd, Jan 15 2020

Examples

			The a(3) = 8 multiset partitions:
  {{1,1,1}}
  {{1,1,2}}
  {{1,2,2}}
  {{1,2,3}}
  {{1},{1},{1}}
  {{1},{1},{2}}
  {{1},{2},{2}}
  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Select[Join@@mps/@allnorm[n],SameQ@@Length/@#&]],{n,8}]
  • PARI
    \\ here U(n,m) gives number for m blocks of size n.
    U(n,m)={sum(k=1, n*m, binomial(binomial(k+n-1, n)+m-1, m)*sum(r=k, n*m, binomial(r, k)*(-1)^(r-k)) )}
    a(n)={sumdiv(n, d, U(d, n/d))} \\ Andrew Howroyd, Sep 15 2018

Formula

a(p) = 2^p for prime p. - Andrew Howroyd, Sep 15 2018
a(n) = Sum_{d|n} A331315(n/d, d). - Andrew Howroyd, Jan 15 2020

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 15 2018