cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A038041 Number of ways to partition an n-set into subsets of equal size.

Original entry on oeis.org

1, 2, 2, 5, 2, 27, 2, 142, 282, 1073, 2, 32034, 2, 136853, 1527528, 4661087, 2, 227932993, 2, 3689854456, 36278688162, 13749663293, 2, 14084955889019, 5194672859378, 7905858780927, 2977584150505252, 13422745388226152, 2, 1349877580746537123, 2
Offset: 1

Views

Author

Keywords

Comments

a(n) = 2 iff n is prime with a(p) = card{ 1|2|3|...|p-1|p, 123...p } = 2. - Bernard Schott, May 16 2019

Examples

			a(4) = card{ 1|2|3|4, 12|34, 14|23, 13|24, 1234 } = 5.
From _Gus Wiseman_, Jul 12 2019: (Start)
The a(6) = 27 set partitions:
  {{1}{2}{3}{4}{5}{6}}  {{12}{34}{56}}  {{123}{456}}  {{123456}}
                        {{12}{35}{46}}  {{124}{356}}
                        {{12}{36}{45}}  {{125}{346}}
                        {{13}{24}{56}}  {{126}{345}}
                        {{13}{25}{46}}  {{134}{256}}
                        {{13}{26}{45}}  {{135}{246}}
                        {{14}{23}{56}}  {{136}{245}}
                        {{14}{25}{36}}  {{145}{236}}
                        {{14}{26}{35}}  {{146}{235}}
                        {{15}{23}{46}}  {{156}{234}}
                        {{15}{24}{36}}
                        {{15}{26}{34}}
                        {{16}{23}{45}}
                        {{16}{24}{35}}
                        {{16}{25}{34}}
(End)
		

Crossrefs

Cf. A061095 (same but with labeled boxes), A005225, A236696, A055225, A262280, A262320.
Column k=1 of A208437.
Row sums of A200472 and A200473.
Cf. A000110, A007837 (different lengths), A035470 (equal sums), A275780, A317583, A320324, A322794, A326512 (equal averages), A326513.

Programs

  • Maple
    A038041 := proc(n) local d;
    add(n!/(d!*(n/d)!^d), d = numtheory[divisors](n)) end:
    seq(A038041(n),n = 1..29); # Peter Luschny, Apr 16 2011
  • Mathematica
    a[n_] := Block[{d = Divisors@ n}, Plus @@ (n!/(#! (n/#)!^#) & /@ d)]; Array[a, 29] (* Robert G. Wilson v, Apr 16 2011 *)
    Table[Sum[n!/((n/d)!*(d!)^(n/d)), {d, Divisors[n]}], {n, 1, 31}] (* Emanuele Munarini, Jan 30 2014 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],SameQ@@Length/@#&]],{n,0,8}] (* Gus Wiseman, Jul 12 2019 *)
  • Maxima
    a(n):= lsum(n!/((n/d)!*(d!)^(n/d)),d,listify(divisors(n)));
    makelist(a(n),n,1,40); /* Emanuele Munarini, Feb 03 2014 */
    
  • PARI
    /* compare to A061095 */
    mnom(v)=
    /* Multinomial coefficient s! / prod(j=1, n, v[j]!) where
      s= sum(j=1, n, v[j]) and n is the number of elements in v[]. */
    sum(j=1, #v, v[j])! / prod(j=1, #v, v[j]!)
    A038041(n)={local(r=0);fordiv(n,d,r+=mnom(vector(d,j,n/d))/d!);return(r);}
    vector(33,n,A038041(n)) /* Joerg Arndt, Apr 16 2011 */
    
  • Python
    import math
    def a(n):
        count = 0
        for k in range(1, n + 1):
            if n % k == 0:
                count += math.factorial(n) // (math.factorial(k) ** (n // k) * math.factorial(n // k))
        return count # Paul Muljadi, Sep 25 2024

Formula

a(n) = Sum_{d divides n} (n!/(d!*((n/d)!)^d)).
E.g.f.: Sum_{k >= 1} (exp(x^k/k!)-1).

Extensions

More terms from Erich Friedman

A320324 Numbers of which each prime index has the same number of prime factors, counted with multiplicity.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 37, 41, 43, 45, 47, 49, 51, 53, 55, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 85, 89, 91, 93, 97, 99, 101, 103, 107, 109, 113, 121, 123, 125, 127, 128, 131, 135, 137, 139, 149, 151, 153
Offset: 1

Views

Author

Gus Wiseman, Oct 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			The terms together with their corresponding multiset multisystems (A302242):
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  15: {{1},{2}}
  16: {{},{},{},{}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
  33: {{1},{3}}
  37: {{1,1,2}}
  41: {{6}}
  43: {{1,4}}
  45: {{1},{1},{2}}
  47: {{2,3}}
  49: {{1,1},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],SameQ@@PrimeOmega/@PrimePi/@First/@FactorInteger[#]&]
  • PARI
    is(n) = #Set(apply(p -> bigomega(primepi(p)), factor(n)[,1]~))<=1 \\ Rémy Sigrist, Oct 11 2018

A326518 Number of normal multiset partitions of weight n where every part has the same sum.

Original entry on oeis.org

1, 1, 3, 7, 15, 31, 75, 169, 445, 1199, 3471
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(4) = 15 normal multiset partitions:
  {}  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
             {{1,2}}    {{1,1,2}}      {{1,1,1,2}}
             {{1},{1}}  {{1,2,2}}      {{1,1,2,2}}
                        {{1,2,3}}      {{1,1,2,3}}
                        {{2},{1,1}}    {{1,2,2,2}}
                        {{3},{1,2}}    {{1,2,2,3}}
                        {{1},{1},{1}}  {{1,2,3,3}}
                                       {{1,2,3,4}}
                                       {{1,1},{1,1}}
                                       {{1,2},{1,2}}
                                       {{1,3},{2,2}}
                                       {{1,4},{2,3}}
                                       {{2},{2},{1,1}}
                                       {{3},{3},{1,2}}
                                       {{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],SameQ@@Total/@#&]],{n,0,5}]

Extensions

a(10) from Robert Price, Apr 04 2025

A381718 Number of normal multiset partitions of weight n into sets with distinct sums.

Original entry on oeis.org

1, 1, 2, 6, 23, 106, 549, 3184, 20353, 141615, 1063399, 8554800, 73281988, 665141182, 6369920854, 64133095134, 676690490875, 7462023572238, 85786458777923, 1025956348473929, 12739037494941490
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(3) = 6 multiset partitions:
  {{1}}  {{1,2}}    {{1,2,3}}
         {{1},{2}}  {{1},{1,2}}
                    {{1},{2,3}}
                    {{2},{1,2}}
                    {{2},{1,3}}
                    {{1},{2},{3}}
The a(4) = 23 factorizations:
  2*3*6  5*30    3*30    2*30    210
         10*15   6*15    6*10    2*105
         2*5*15  2*3*15  2*3*10  3*70
         3*5*10                  5*42
                                 7*30
                                 6*35
                                 10*21
                                 2*3*35
                                 2*5*21
                                 2*7*15
                                 3*5*14
                                 2*3*5*7
		

Crossrefs

For distinct blocks instead of sums we have A116539, see A050326.
Without distinct sums we have A116540 (normal set multipartitions).
Twice-partitions of this type are counted by A279785.
Without strict blocks we have A326519.
Factorizations of this type are counted by A381633.
For constant instead of strict blocks we have A382203.
For distinct sizes instead of sums we have A382428, non-strict blocks A326517.
For equal instead of distinct block-sums we have A382429, non-strict blocks A326518.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count factorizations, strict A045778.
Normal multiset partitions: A034691, A035310, A255906.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(10)-a(11) from Robert Price, Mar 31 2025
a(12)-a(20) from Christian Sievers, Apr 05 2025

A326519 Number of normal multiset partitions of weight n where each part has a different sum.

Original entry on oeis.org

1, 1, 3, 11, 51, 259, 1461, 9133, 62348, 459547, 3632419
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(3) = 11 normal multiset partitions:
  {}  {{1}}  {{1,1}}    {{1,1,1}}
             {{1,2}}    {{1,1,2}}
             {{1},{2}}  {{1,2,2}}
                        {{1,2,3}}
                        {{1},{1,1}}
                        {{1},{1,2}}
                        {{1},{2,2}}
                        {{1},{2,3}}
                        {{2},{1,2}}
                        {{2},{1,3}}
                        {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@Total/@#&]],{n,0,5}]

Extensions

a(8)-a(10) from Robert Price, Apr 03 2025

A326517 Number of normal multiset partitions of weight n where each part has a different size.

Original entry on oeis.org

1, 1, 2, 12, 28, 140, 956, 3520, 17792, 111600, 1144400, 4884064, 34907936, 214869920, 1881044032, 25687617152, 139175009920, 1098825972608, 8770328141888, 74286112885504, 784394159958848, 15114871659653952, 92392468773724544, 889380453354852416, 7652770202041529856
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(3) = 12 normal multiset partitions:
  {}  {{1}}  {{1,1}}  {{1,1,1}}
             {{1,2}}  {{1,1,2}}
                      {{1,2,2}}
                      {{1,2,3}}
                      {{1},{1,1}}
                      {{1},{1,2}}
                      {{1},{2,2}}
                      {{1},{2,3}}
                      {{2},{1,1}}
                      {{2},{1,2}}
                      {{2},{1,3}}
                      {{3},{1,2}}
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..min(1, n/i))))
        end:
    a:= n->add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..n), k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 23 2023
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@Length/@#&]],{n,0,6}]
  • PARI
    R(n, k)={Vec(prod(j=1, n, 1 + binomial(k+j-1, j)*x^j + O(x*x^n)))}
    seq(n)={sum(k=0, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))} \\ Andrew Howroyd, Feb 07 2020

Extensions

Terms a(8) and beyond from Andrew Howroyd, Feb 07 2020

A322794 Number of factorizations of n into factors > 1 where all factors have the same number of prime factors counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 4, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

Also the number of uniform multiset partitions of the multiset of prime indices of n, where a multiset partition is uniform if all parts have the same size.

Examples

			The a(1260) = 13 factorizations:
  (1260)  (18*70)   (4*9*35)   (2*2*3*3*5*7)
          (20*63)   (6*6*35)
          (28*45)   (4*15*21)
          (30*42)   (6*10*21)
          (12*105)  (6*14*15)
                    (9*10*14)
The a(1260) = 13 multiset partitions:
  {{1},{1},{2},{2},{3},{4}}
     {{1,1},{2,2},{3,4}}
     {{1,1},{2,3},{2,4}}
     {{1,2},{1,2},{3,4}}
     {{1,2},{1,3},{2,4}}
     {{1,2},{1,4},{2,3}}
     {{2,2},{1,3},{1,4}}
      {{1,1,2},{2,3,4}}
      {{1,2,2},{1,3,4}}
      {{1,1,3},{2,2,4}}
      {{1,1,4},{2,2,3}}
      {{1,2,3},{1,2,4}}
       {{1,1,2,2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],SameQ@@PrimeOmega/@#&]],{n,100}]

A331315 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k columns and any number of nonzero rows with column sums n and columns in nonincreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 14, 4, 1, 1, 8, 150, 128, 8, 1, 1, 16, 2210, 10848, 1288, 16, 1, 1, 32, 41642, 1796408, 933448, 13472, 32, 1, 1, 64, 956878, 491544512, 1852183128, 85862144, 143840, 64, 1, 1, 128, 25955630, 200901557728, 7805700498776, 2098614254048, 8206774496, 1556480, 128, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2020

Keywords

Comments

The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.
A(n,k) is the number of n-uniform k-block multisets of multisets.

Examples

			Array begins:
====================================================================
n\k | 0  1      2          3                4                  5
----+---------------------------------------------------------------
  0 | 1  1      1          1                1                  1 ...
  1 | 1  1      2          4                8                 16 ...
  2 | 1  2     14        150             2210              41642 ...
  3 | 1  4    128      10848          1796408          491544512 ...
  4 | 1  8   1288     933448       1852183128      7805700498776 ...
  5 | 1 16  13472   85862144    2098614254048 140102945876710912 ...
  6 | 1 32 143840 8206774496 2516804131997152 ...
     ...
The A(2,2) = 14 matrices are:
  [1 0]  [1 0]  [1 0]  [2 0]  [1 1]  [1 0]  [1 0]
  [1 0]  [0 1]  [0 1]  [0 1]  [1 0]  [1 1]  [1 0]
  [0 1]  [1 0]  [0 1]  [0 1]  [0 1]  [0 1]  [0 2]
  [0 1]  [0 1]  [1 0]
.
  [1 0]  [1 0]  [2 1]  [2 0]  [1 1]  [1 0]  [2 2]
  [0 2]  [0 1]  [0 1]  [0 2]  [1 1]  [1 2]
  [1 0]  [1 1]
		

Crossrefs

Rows n=1..2 are A000012, A121227.
Columns k=0..2 are A000012, A011782, A331397.
The version with binary entries is A330942.
The version with distinct columns is A331278.
Other variations considering distinct rows and columns and equivalence under different combinations of permutations of rows and columns are:
All solutions: A316674 (all), A331568 (distinct rows).
Up to row permutation: A219727, A219585, A331161, A331160.
Up to column permutation: this sequence, A331572, A331278, A331570.
Nonisomorphic: A331485.
Cf. A317583.

Programs

  • PARI
    T(n, k)={my(m=n*k); sum(j=0, m, binomial(binomial(j+n-1, n)+k-1, k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}

Formula

A(n,k) = Sum_{j=0..n*k} binomial(binomial(j+n-1,n)+k-1, k) * (Sum_{i=j..n*k} (-1)^(i-j)*binomial(i,j)).
A(n, k) = Sum_{j=0..k} abs(Stirling1(k, j))*A316674(n, j)/k!.
A(n, k) = Sum_{j=0..k} binomial(k-1, k-j)*A331278(n, j).
A(n, k) = A011782(n) * A330942(n, k) for k > 0.
A317583(n) = Sum_{d|n} A(n/d, d).

A317776 Number of strict multiset partitions of normal multisets of size n, where a multiset is normal if it spans an initial interval of positive integers.

Original entry on oeis.org

1, 1, 3, 13, 59, 313, 1847, 11977, 84483, 642405, 5228987, 45297249, 415582335, 4021374193, 40895428051, 435721370413, 4850551866619, 56282199807401, 679220819360775, 8508809310177481, 110454586096508563, 1483423600240661781, 20581786429087269819
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Examples

			The a(3) = 13 strict multiset partitions:
  {{1,1,1}}, {{1},{1,1}},
  {{1,2,2}}, {{1},{2,2}}, {{2},{1,2}},
  {{1,1,2}}, {{1},{1,2}}, {{2},{1,1}},
  {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1},{2},{3}}.
		

Crossrefs

Programs

  • Maple
    C:= binomial:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k)*C(C(k+i-1, i), j), j=0..n/i)))
        end:
    a:= n-> add(add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 16 2019
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@#&]],{n,9}]
    (* Second program: *)
    c := Binomial;
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k] c[c[k+i-1, i], j], {j, 0, n/i}]]];
    a[n_] := Sum[b[n, n, i] (-1)^(k-i) c[k, i], {k, 0, n}, {i, 0, k}];
    a /@ Range[0, 23] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Extensions

a(0), a(8)-a(22) from Alois P. Heinz, Sep 16 2019

A326520 Number of normal multiset partitions of weight n where every part has the same average.

Original entry on oeis.org

1, 1, 3, 7, 17, 35, 103, 197
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(4) = 17 normal multiset partitions where every part has the same average:
  {}  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
             {{1,2}}    {{1,1,2}}      {{1,1,1,2}}
             {{1},{1}}  {{1,2,2}}      {{1,1,2,2}}
                        {{1,2,3}}      {{1,1,2,3}}
                        {{1},{1,1}}    {{1,2,2,2}}
                        {{2},{1,3}}    {{1,2,2,3}}
                        {{1},{1},{1}}  {{1,2,3,3}}
                                       {{1,2,3,4}}
                                       {{1},{1,1,1}}
                                       {{1,1},{1,1}}
                                       {{1,2},{1,2}}
                                       {{1,3},{2,2}}
                                       {{1,4},{2,3}}
                                       {{2},{1,2,3}}
                                       {{1},{1},{1,1}}
                                       {{2},{2},{1,3}}
                                       {{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],SameQ@@Mean/@#&]],{n,0,5}]
Showing 1-10 of 20 results. Next