cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A317583 Number of multiset partitions of normal multisets of size n such that all blocks have the same size.

Original entry on oeis.org

1, 4, 8, 30, 32, 342, 128, 3754, 11360, 56138, 2048, 3834670, 8192, 27528494, 577439424, 2681075210, 131072, 238060300946, 524288, 11045144602614, 115488471132032, 49840258213638, 8388608, 152185891301461434, 140102945910265344, 124260001149229146, 85092642310351607968
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.
a(n) is the number of nonnegative integer matrices with total sum n, nonzero rows and each column with the same sum with columns in nonincreasing lexicographic order. - Andrew Howroyd, Jan 15 2020

Examples

			The a(3) = 8 multiset partitions:
  {{1,1,1}}
  {{1,1,2}}
  {{1,2,2}}
  {{1,2,3}}
  {{1},{1},{1}}
  {{1},{1},{2}}
  {{1},{2},{2}}
  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Select[Join@@mps/@allnorm[n],SameQ@@Length/@#&]],{n,8}]
  • PARI
    \\ here U(n,m) gives number for m blocks of size n.
    U(n,m)={sum(k=1, n*m, binomial(binomial(k+n-1, n)+m-1, m)*sum(r=k, n*m, binomial(r, k)*(-1)^(r-k)) )}
    a(n)={sumdiv(n, d, U(d, n/d))} \\ Andrew Howroyd, Sep 15 2018

Formula

a(p) = 2^p for prime p. - Andrew Howroyd, Sep 15 2018
a(n) = Sum_{d|n} A331315(n/d, d). - Andrew Howroyd, Jan 15 2020

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 15 2018

A330942 Array read by antidiagonals: A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with n ones in every column and columns in nonincreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 7, 1, 1, 1, 8, 75, 32, 1, 1, 1, 16, 1105, 2712, 161, 1, 1, 1, 32, 20821, 449102, 116681, 842, 1, 1, 1, 64, 478439, 122886128, 231522891, 5366384, 4495, 1, 1, 1, 128, 12977815, 50225389432, 975712562347, 131163390878, 256461703, 24320, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2020

Keywords

Comments

The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.
A(n,k) is the number of labeled n-uniform hypergraphs with multiple edges allowed and with k edges and no isolated vertices. When n=2 these objects are multigraphs.

Examples

			Array begins:
============================================================
n\k | 0 1    2         3              4                5
----+-------------------------------------------------------
  0 | 1 1    1         1              1                1 ...
  1 | 1 1    2         4              8               16 ...
  2 | 1 1    7        75           1105            20821 ...
  3 | 1 1   32      2712         449102        122886128 ...
  4 | 1 1  161    116681      231522891     975712562347 ...
  5 | 1 1  842   5366384   131163390878 8756434117294432 ...
  6 | 1 1 4495 256461703 78650129124911 ...
  ...
The A(2,2) = 7 matrices are:
   [1 0]  [1 0]  [1 0]  [1 1]  [1 0]  [1 0]  [1 1]
   [1 0]  [0 1]  [0 1]  [1 0]  [1 1]  [0 1]  [1 1]
   [0 1]  [1 0]  [0 1]  [0 1]  [0 1]  [1 1]
   [0 1]  [0 1]  [1 0]
		

Crossrefs

Rows n=1..3 are A000012, A121316, A136246.
Columns k=0..3 are A000012, A000012, A226994, A137220.
The version with nonnegative integer entries is A331315.
Other variations considering distinct rows and columns and equivalence under different combinations of permutations of rows and columns are:
All solutions: A262809 (all), A331567 (distinct rows).
Up to row permutation: A188392, A188445, A331126, A331039.
Up to column permutation: this sequence, A331571, A331277, A331569.
Nonisomorphic: A331461, A331510, A331508, A331509.
Cf. A331638.

Programs

  • Mathematica
    T[n_, k_] := With[{m = n k}, Sum[Binomial[Binomial[j, n] + k - 1, k] Sum[ (-1)^(i - j) Binomial[i, j], {i, j, m}], {j, 0, m}]];
    Table[T[n - k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 10 2020, from PARI *)
  • PARI
    T(n, k)={my(m=n*k); sum(j=0, m, binomial(binomial(j, n)+k-1, k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}

Formula

A(n,k) = Sum_{j=0..n*k} binomial(binomial(j,n)+k-1, k) * (Sum_{i=j..n*k} (-1)^(i-j)*binomial(i,j)).
A(n, k) = Sum_{j=0..k} abs(Stirling1(k, j))*A262809(n, j)/k!.
A(n, k) = Sum_{j=0..k} binomial(k-1, k-j)*A331277(n, j).
A331638(n) = Sum_{d|n} A(n/d, d).

A316674 Number A(n,k) of paths from {0}^k to {n}^k that always move closer to {n}^k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 13, 26, 4, 1, 1, 75, 818, 252, 8, 1, 1, 541, 47834, 64324, 2568, 16, 1, 1, 4683, 4488722, 42725052, 5592968, 26928, 32, 1, 1, 47293, 617364026, 58555826884, 44418808968, 515092048, 287648, 64, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 10 2018

Keywords

Comments

A(n,k) is the number of nonnegative integer matrices with k columns and any number of nonzero rows with column sums n. - Andrew Howroyd, Jan 23 2020

Examples

			Square array A(n,k) begins:
  1,  1,     1,         1,              1,                    1, ...
  1,  1,     3,        13,             75,                  541, ...
  1,  2,    26,       818,          47834,              4488722, ...
  1,  4,   252,     64324,       42725052,          58555826884, ...
  1,  8,  2568,   5592968,    44418808968,      936239675880968, ...
  1, 16, 26928, 515092048, 50363651248560, 16811849850663255376, ...
		

Crossrefs

Columns k=0..3 give: A000012, A011782, A052141, A316673.
Rows n=0..2 give: A000012, A000670, A059516.
Main diagonal gives A316677.

Programs

  • Maple
    A:= (n, k)-> `if`(k=0, 1, ceil(2^(n-1))*add(add((-1)^i*
         binomial(j, i)*binomial(j-i, n)^k, i=0..j), j=0..k*n)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    A[n_, k_] := Sum[If[k == 0, 1, Binomial[j+n-1, n]^k] Sum[(-1)^(i-j)* Binomial[i, j], {i, j, n k}], {j, 0, n k}];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Nov 04 2021 *)
  • PARI
    T(n,k)={my(m=n*k); sum(j=0, m, binomial(j+n-1,n)^k*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))} \\ Andrew Howroyd, Jan 23 2020

Formula

A(n,k) = A262809(n,k) * A011782(n) for k>0, A(n,0) = 1.
A(n,k) = Sum_{j=0..n*k} binomial(j+n-1,n)^k * Sum_{i=j..n*k} (-1)^(i-j) * binomial(i,j). - Andrew Howroyd, Jan 23 2020

A331570 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k distinct columns and any number of distinct nonzero rows with column sums n and columns in decreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 6, 3, 1, 0, 1, 46, 42, 3, 1, 0, 1, 544, 1900, 268, 5, 1, 0, 1, 7983, 184550, 73028, 1239, 11, 1, 0, 1, 144970, 29724388, 57835569, 2448599, 7278, 13, 1, 0, 1, 3097825, 7137090958, 99940181999, 16550232235, 75497242, 40828, 19, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 21 2020

Keywords

Comments

The condition that the columns be in decreasing order is equivalent to considering nonequivalent matrices with distinct columns up to permutation of columns.

Examples

			Array begins:
=============================================================
n\k | 0  1    2        3             4                  5
----+--------------------------------------------------------
  0 | 1  1    0        0             0                  0 ...
  1 | 1  1    1        1             1                  1 ...
  2 | 1  1    6       46           544               7983 ...
  3 | 1  3   42     1900        184550           29724388 ...
  4 | 1  3  268    73028      57835569        99940181999 ...
  5 | 1  5 1239  2448599   16550232235    311353753947045 ...
  6 | 1 11 7278 75497242 4388476386528 896320470282357104 ...
  ...
The A(2,2) = 6 matrices are:
   [1 1]  [1 0]  [1 0]  [2 1]  [2 0]  [1 0]
   [1 0]  [1 1]  [0 1]  [0 1]  [0 2]  [1 2]
   [0 1]  [0 1]  [1 1]
		

Crossrefs

Rows 1..3 are A000012, A331704, A331705.
Columns k=0..3 are A000012, A032020, A331706, A331707.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(EulerT(v)[n], k)/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, k<=1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }

Formula

A(n, k) = Sum_{j=0..k} Stirling1(k, j)*A331568(n, j)/k!.
A(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k-1, k-j)*A331572(n, j).
A331708(n) = Sum_{d|n} A(n/d, d).

A331572 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k columns and any number of distinct nonzero rows with column sums n and columns in nonincreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 7, 3, 1, 1, 8, 59, 45, 3, 1, 1, 16, 701, 1987, 271, 5, 1, 1, 32, 10460, 190379, 73567, 1244, 11, 1, 1, 64, 190816, 30474159, 58055460, 2451082, 7289, 13, 1, 1, 128, 4098997, 7287577611, 100171963518, 16557581754, 75511809, 40841, 19, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 21 2020

Keywords

Comments

The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.

Examples

			Array begins:
==========================================================
n\k | 0  1    2        3             4               5
----+-----------------------------------------------------
  0 | 1  1    1        1             1               1 ...
  1 | 1  1    2        4             8              16 ...
  2 | 1  1    7       59           701           10460 ...
  3 | 1  3   45     1987        190379        30474159 ...
  4 | 1  3  271    73567      58055460    100171963518 ...
  5 | 1  5 1244  2451082   16557581754 311419969572540 ...
  6 | 1 11 7289 75511809 4388702900099 ...
  ...
The A(2,2) = 7 matrices are:
   [1 1]  [1 0]  [1 0]  [2 1]  [2 0]  [1 0]  [2 2]
   [1 0]  [1 1]  [0 1]  [0 1]  [0 2]  [1 2]
   [0 1]  [0 1]  [1 1]
		

Crossrefs

Rows n=0..3 are A000012, A011782, A331709, A331710.
Columns k=0..3 are A000012, A032020, A331711, A331712.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(EulerT(v)[n] + k - 1, k)/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, 1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }

Formula

A(n, k) = Sum_{j=0..k} abs(Stirling1(k, j))*A331568(n, j)/k!.
A(n, k) = Sum_{j=0..k} binomial(k-1, k-j)*A331570(n, j).
A331713(n) = Sum_{d|n} A(n/d, d).

A331485 Array read by antidiagonals: A(n,k) is the number of nonequivalent nonnegative integer matrices with k columns and any number of nonzero rows with column sums n up to permutation of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 3, 1, 1, 5, 23, 21, 5, 1, 1, 7, 79, 162, 66, 7, 1, 1, 11, 274, 1636, 1338, 192, 11, 1, 1, 15, 1003, 19977, 43686, 10585, 565, 15, 1, 1, 22, 3763, 298416, 2142277, 1178221, 82694, 1579, 22, 1, 1, 30, 14723, 5300296, 149056260, 232984145, 30370346, 612700, 4348, 30, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 18 2020

Keywords

Comments

A(n,k) is the number of non-isomorphic multiset partitions (multisets of multisets) with k parts each of size n.

Examples

			Array begins:
============================================================
n\k | 0  1   2     3        4           5              6
----+-------------------------------------------------------
  0 | 1  1   1     1        1           1              1 ...
  1 | 1  1   2     3        5           7             11 ...
  2 | 1  2   7    23       79         274           1003 ...
  3 | 1  3  21   162     1636       19977         298416 ...
  4 | 1  5  66  1338    43686     2142277      149056260 ...
  5 | 1  7 192 10585  1178221   232984145    74676589469 ...
  6 | 1 11 565 82694 30370346 23412296767 33463656939910 ...
  ...
The A(2,2) = 7 matrices are:
  [1 0]  [2 0]  [1 1]  [2 1]  [2 0]  [1 1]  [2 2]
  [1 0]  [0 1]  [1 0]  [0 1]  [0 2]  [1 1]
  [0 1]  [0 1]  [0 1]
  [0 1]
		

Crossrefs

Programs

  • PARI
    \\ See A318951 for RowSumMats
    T(n, k)={RowSumMats(k, n*k, n)}
    { for(n=0, 7, for(k=0, 6, print1(T(n, k), ", ")); print) }

Formula

A306017(n) = Sum_{d|n} A(n/d, d).

A331568 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k columns and any number of distinct nonzero rows with column sums n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 13, 13, 3, 1, 1, 75, 313, 87, 3, 1, 1, 541, 14797, 11655, 539, 5, 1, 1, 4683, 1095601, 4498191, 439779, 2483, 11, 1, 1, 47293, 119621653, 3611504823, 1390686419, 14699033, 14567, 13, 1, 1, 545835, 17943752233, 5192498314767, 12006713338683, 397293740555, 453027131, 81669, 19, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 21 2020

Keywords

Examples

			Array begins:
================================================================
n\k | 0  1     2         3               4                 5
----+-----------------------------------------------------------
  0 | 1  1     1         1               1                 1 ...
  1 | 1  1     3        13              75               541 ...
  2 | 1  1    13       313           14797           1095601 ...
  3 | 1  3    87     11655         4498191        3611504823 ...
  4 | 1  3   539    439779      1390686419    12006713338683 ...
  5 | 1  5  2483  14699033    397293740555 37366422896708825 ...
  6 | 1 11 14567 453027131 105326151279287 ...
  ...
The A(2,2) = 13 matrices are:
   [1 1]  [1 1]  [1 0]  [1 0]  [0 1]  [0 1]
   [1 0]  [0 1]  [1 1]  [0 1]  [1 1]  [1 0]
   [0 1]  [1 0]  [0 1]  [1 1]  [1 0]  [1 1]
.
   [2 1]  [2 0]  [1 2]  [1 0]  [0 2]  [0 1]  [2 2]
   [0 1]  [0 2]  [1 0]  [1 2]  [2 0]  [2 1]
		

Crossrefs

Rows n=0..3 are A000012, A000670, A331644, A331645.
Columns k=0..3 are A000012, A032020, A331646, A331647.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); EulerT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, 1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }

Formula

A331648(n) = Sum_{d|n} A(n/d, d).

A331160 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k distinct columns and any number of distinct nonzero rows with column sums n and rows in decreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 4, 2, 1, 0, 1, 27, 15, 2, 1, 0, 1, 266, 317, 44, 3, 1, 0, 1, 3599, 12586, 2763, 120, 4, 1, 0, 1, 62941, 803764, 390399, 21006, 319, 5, 1, 0, 1, 1372117, 75603729, 103678954, 10074052, 147296, 804, 6, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 10 2020

Keywords

Comments

The condition that the rows be in decreasing order is equivalent to considering nonequivalent matrices with distinct rows up to permutation of rows.

Examples

			Array begins:
===================================================================
n\k | 0 1   2      3          4              5                6
----+--------------------------------------------------------------
  0 | 1 1   0      0          0              0                0 ...
  1 | 1 1   1      1          1              1                1 ...
  2 | 1 1   4     27        266           3599            62941 ...
  3 | 1 2  15    317      12586         803764         75603729 ...
  4 | 1 2  44   2763     390399      103678954      46278915417 ...
  5 | 1 3 120  21006   10074052    10679934500   21806685647346 ...
  6 | 1 4 319 147296  232165926   956594630508 8717423133548684 ...
  7 | 1 5 804 967829 4903530137 76812482919237 ...
      ...
The A(2,2) = 4 matrices are:
   [2 1]   [2 0]   [1 2]   [1 1]
   [0 1]   [0 2]   [1 0]   [1 0]
                           [0 1]
		

Crossrefs

Rows n=1..3 are A000012, A331316, A331344
Columns k=0..2 are A000012, A000009, A331317.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(EulerT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, k<=1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}

Formula

A(n, k) = Sum_{j=0..k} Stirling1(k, j)*A219585(n, j).
A331318(n) = Sum_{d|n} A(n/d, d).

A331161 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k distinct columns and any number of nonzero rows with column sums n and rows in nonincreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 7, 3, 1, 0, 1, 43, 28, 5, 1, 0, 1, 403, 599, 104, 7, 1, 0, 1, 5245, 23243, 6404, 332, 11, 1, 0, 1, 89132, 1440532, 872681, 57613, 1032, 15, 1, 0, 1, 1898630, 131530132, 222686668, 26560747, 473674, 2983, 22, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 10 2020

Keywords

Comments

The condition that the rows be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of rows

Examples

			Array begins:
====================================================================
n\k | 0  1    2       3           4             5              6
----+---------------------------------------------------------------
  0 | 1  1    0       0           0             0              0 ...
  1 | 1  1    1       1           1             1              1 ...
  2 | 1  2    7      43         403          5245          89132 ...
  3 | 1  3   28     599       23243       1440532      131530132 ...
  4 | 1  5  104    6404      872681     222686668    95605470805 ...
  5 | 1  7  332   57613    26560747   26852940027 52296207431182 ...
  6 | 1 11 1032  473674   712725249 2776638423133 ...
  7 | 1 15 2983 3599384 17328777789 ...
  ...
The A(2,2) = 7 matrices are:
   [2 1]   [2 0]   [1 2]   [1 1]   [2 0]   [1 0]   [1 0]
   [0 1]   [0 2]   [1 0]   [1 0]   [0 1]   [1 0]   [1 0]
                           [0 1]   [0 1]   [0 2]   [0 1]
                                                   [0 1]
		

Crossrefs

Rows n=1..3 are A000012, A014501, A331196.
Columns k=0..2 are A000012, A000041, A331197.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(EulerT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, k<=1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p, n, k), [1, n]); s*q[#q-j]))}

Formula

A(n, k) = Sum_{j=0..k} Stirling1(k, j)*A219727(n, j).
A330158(n) = Sum_{d|n} A(n/d, d).

A331278 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k distinct columns and any number of nonzero rows with column sums n and columns in decreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 12, 4, 1, 0, 1, 124, 124, 8, 1, 0, 1, 1800, 10596, 1280, 16, 1, 0, 1, 33648, 1764244, 930880, 13456, 32, 1, 0, 1, 769336, 484423460, 1849386640, 85835216, 143808, 64, 1, 0, 1, 20796960, 198461691404, 7798297361808, 2098356708016, 8206486848, 1556416, 128, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2020

Keywords

Comments

The condition that the columns be in decreasing order is equivalent to considering nonequivalent matrices with distinct columns up to permutation of columns.
A(n,k) is the number of n-uniform k-block sets of multisets.

Examples

			Array begins:
====================================================================
n\k | 0  1      2          3                4                   5
----+---------------------------------------------------------------
  0 | 1  1      0          0                0                   0 ...
  1 | 1  1      1          1                1                   1 ...
  2 | 1  2     12        124             1800               33648 ...
  3 | 1  4    124      10596          1764244           484423460 ...
  4 | 1  8   1280     930880       1849386640       7798297361808 ...
  5 | 1 16  13456   85835216    2098356708016  140094551934813712 ...
  6 | 1 32 143808 8206486848 2516779512105152 ...
  ...
The A(2,2) matrices are:
  [1 0]  [1 0]  [1 0]  [2 0]  [1 1]  [1 0]
  [1 0]  [0 1]  [0 1]  [0 1]  [1 0]  [1 1]
  [0 1]  [1 0]  [0 1]  [0 1]  [0 1]  [0 1]
  [0 1]  [0 1]  [1 0]
.
  [1 0]  [1 0]  [1 0]  [2 1]  [2 0]  [1 0]
  [1 0]  [0 2]  [0 1]  [0 1]  [0 2]  [1 2]
  [0 2]  [1 0]  [1 1]
		

Crossrefs

Rows n=1..2 are A000012, A173219.
Columns k=0..2 are A000012, A011782, A331396.
The version with binary entries is A331277.
The version with not necessarily distinct columns is A331315.
Cf. A316674 (unrestricted version), A330942, A331395.

Programs

  • PARI
    T(n,k)={my(m=n*k); sum(j=0, m, binomial(binomial(j+n-1,n),k)*sum(i=j, m, (-1)^(i-j)*binomial(i,j)))}

Formula

A(n,k) = Sum_{j=0..n*k} binomial(binomial(j+n-1,n),k) * (Sum_{i=j..n*k} (-1)^(i-j)*binomial(i,j)).
A(n, k) = Sum_{j=0..k} Stirling1(k, j)*A316674(n, j)/k!.
A(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k-1, k-j)*A331315(n, j).
A(n, k) = A011782(n) * A331277(n, k) for k > 0.
A331395(n) = Sum_{d|n} A(n/d, d).
Showing 1-10 of 13 results. Next