A331039
Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set-systems on a k-set.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 5, 0, 0, 1, 0, 1, 43, 5, 0, 0, 1, 0, 1, 518, 175, 1, 0, 0, 1, 0, 1, 8186, 9426, 272, 0, 0, 0, 1, 0, 1, 163356, 751365, 64453, 205, 0, 0, 0, 1, 0, 1, 3988342, 84012191, 23553340, 248685, 80, 0, 0, 0, 1
Offset: 0
Array begins:
==========================================================
n\k | 0 1 2 3 4 5 6 7
----+-----------------------------------------------------
0 | 1 1 0 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 0 1 5 43 518 8186 163356 ...
3 | 1 0 0 5 175 9426 751365 84012191 ...
4 | 1 0 0 1 272 64453 23553340 13241130441 ...
5 | 1 0 0 0 205 248685 421934358 1176014951129 ...
6 | 1 0 0 0 80 620548 5055634889 69754280936418 ...
7 | 1 0 0 0 15 1057989 43402628681 2972156676325398 ...
...
The A(2,3) = 5 matrices are:
[1 1 1] [1 1 0] [1 1 0] [1 0 1] [1 1 0]
[1 0 0] [1 0 1] [1 0 0] [1 0 0] [1 0 1]
[0 1 0] [0 1 0] [0 1 1] [0 1 1] [0 1 1]
[0 0 1] [0 0 1] [0 0 1] [0 1 0]
The corresponding set-systems are:
{{1,2,3}, {1}, {2}, {3}},
{{1,2}, {1,3}, {2,3}},
{{1,2}, {1,3}, {2}, {3}},
{{1,2}, {1}, {2,3}, {3}},
{{1,3}, {1}, {2,3}, {2}}.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, k<=1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}
A331315
Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k columns and any number of nonzero rows with column sums n and columns in nonincreasing lexicographic order.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 14, 4, 1, 1, 8, 150, 128, 8, 1, 1, 16, 2210, 10848, 1288, 16, 1, 1, 32, 41642, 1796408, 933448, 13472, 32, 1, 1, 64, 956878, 491544512, 1852183128, 85862144, 143840, 64, 1, 1, 128, 25955630, 200901557728, 7805700498776, 2098614254048, 8206774496, 1556480, 128, 1
Offset: 0
Array begins:
====================================================================
n\k | 0 1 2 3 4 5
----+---------------------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 1 1 2 4 8 16 ...
2 | 1 2 14 150 2210 41642 ...
3 | 1 4 128 10848 1796408 491544512 ...
4 | 1 8 1288 933448 1852183128 7805700498776 ...
5 | 1 16 13472 85862144 2098614254048 140102945876710912 ...
6 | 1 32 143840 8206774496 2516804131997152 ...
...
The A(2,2) = 14 matrices are:
[1 0] [1 0] [1 0] [2 0] [1 1] [1 0] [1 0]
[1 0] [0 1] [0 1] [0 1] [1 0] [1 1] [1 0]
[0 1] [1 0] [0 1] [0 1] [0 1] [0 1] [0 2]
[0 1] [0 1] [1 0]
.
[1 0] [1 0] [2 1] [2 0] [1 1] [1 0] [2 2]
[0 2] [0 1] [0 1] [0 2] [1 1] [1 2]
[1 0] [1 1]
The version with binary entries is
A330942.
The version with distinct columns is
A331278.
Other variations considering distinct rows and columns and equivalence under different combinations of permutations of rows and columns are:
-
T(n, k)={my(m=n*k); sum(j=0, m, binomial(binomial(j+n-1, n)+k-1, k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}
A331126
Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set multipartitions (multisets of sets) on a k-set.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 9, 3, 1, 1, 0, 1, 70, 29, 4, 1, 1, 0, 1, 794, 666, 68, 5, 1, 1, 0, 1, 12055, 28344, 3642, 134, 6, 1, 1, 0, 1, 233238, 1935054, 469368, 14951, 237, 7, 1, 1, 0, 1, 5556725, 193926796, 119843417, 5289611, 50985, 388, 8, 1, 1
Offset: 0
Array begins:
====================================================================
n\k | 0 1 2 3 4 5 6 7
----+---------------------------------------------------------------
0 | 1 1 0 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 2 9 70 794 12055 233238 ...
3 | 1 1 3 29 666 28344 1935054 193926796 ...
4 | 1 1 4 68 3642 469368 119843417 53059346010 ...
5 | 1 1 5 134 14951 5289611 4681749424 8639480647842 ...
6 | 1 1 6 237 50985 46241343 134332244907 989821806791367 ...
7 | 1 1 7 388 151901 333750928 3032595328876 85801167516707734 ...
...
The A(2,2) = 2 matrices are:
[1 1] [1 0]
[1 0] [1 0]
[0 1] [0 1]
[0 1]
The corresponding set multipartitions are:
{{1,2}, {1}, {2}},
{{1}, {1}, {2}, {2}}.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, k<=1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p, n, k), [1, n]); s*q[#q-j]))}
A331160
Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k distinct columns and any number of distinct nonzero rows with column sums n and rows in decreasing lexicographic order.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 4, 2, 1, 0, 1, 27, 15, 2, 1, 0, 1, 266, 317, 44, 3, 1, 0, 1, 3599, 12586, 2763, 120, 4, 1, 0, 1, 62941, 803764, 390399, 21006, 319, 5, 1, 0, 1, 1372117, 75603729, 103678954, 10074052, 147296, 804, 6, 1
Offset: 0
Array begins:
===================================================================
n\k | 0 1 2 3 4 5 6
----+--------------------------------------------------------------
0 | 1 1 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 ...
2 | 1 1 4 27 266 3599 62941 ...
3 | 1 2 15 317 12586 803764 75603729 ...
4 | 1 2 44 2763 390399 103678954 46278915417 ...
5 | 1 3 120 21006 10074052 10679934500 21806685647346 ...
6 | 1 4 319 147296 232165926 956594630508 8717423133548684 ...
7 | 1 5 804 967829 4903530137 76812482919237 ...
...
The A(2,2) = 4 matrices are:
[2 1] [2 0] [1 2] [1 1]
[0 1] [0 2] [1 0] [1 0]
[0 1]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(EulerT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, k<=1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}
A014501
Number of graphs with loops, having unlabeled (non-isolated) nodes and n labeled edges.
Original entry on oeis.org
1, 2, 7, 43, 403, 5245, 89132, 1898630, 49209846, 1517275859, 54669946851, 2269075206395, 107199678164289, 5707320919486026, 339510756324234931, 22400182888853554291, 1628654713107465602783, 129754625253841669625051
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
A331196
Number of nonnegative integer matrices with n distinct columns and any number of nonzero rows with each column sum being 3 and rows in nonincreasing lexicographic order.
Original entry on oeis.org
1, 3, 28, 599, 23243, 1440532, 131530132, 16720208200, 2837752812927, 622570020892599, 172077041175850521, 58679982298020226625, 24262822372018694983540, 11986886218243164848742812, 6987708088810202717378639087, 4754544525981425409034078100189
Offset: 0
The a(2) = 28 matrices include 6 with 2 rows, 10 with 3 rows, 8 with 4 rows, 3 with 5 rows and 1 with 6 rows. The 16 with 2 or 3 rows are:
[3 2] [3 1] [3 0] [2 3] [2 1] [2 0] [3 1] [3 0]
[0 1] [0 2] [0 3] [1 0] [1 2] [1 3] [0 1] [0 2]
[0 1] [0 1]
.
[2 2] [2 1] [2 1] [2 0] [2 0] [2 0] [1 3] [1 2]
[1 0] [1 1] [1 0] [1 2] [1 1] [1 0] [1 0] [1 1]
[0 1] [0 1] [0 2] [0 1] [0 2] [0 3] [1 0] [1 0]
A331197
Number of nonnegative integer matrices with 2 distinct columns and any number of nonzero rows with each column sum being n and rows in nonincreasing lexicographic order.
Original entry on oeis.org
0, 1, 7, 28, 104, 332, 1032, 2983, 8384, 22622, 59479, 151902, 379616, 927521, 2224100, 5236410, 12130549, 27669296, 62229605, 138095206, 302672402, 655627183, 1404598865, 2977830134, 6251059210, 12999297747, 26791987616, 54750232180, 110977385294, 223204454700, 445590973235
Offset: 0
The a(2) = 7 matrices are:
[2 1] [2 0] [1 2] [1 1] [2 0] [1 0] [1 0]
[0 1] [0 2] [1 0] [1 0] [0 1] [1 0] [1 0]
[0 1] [0 1] [0 2] [0 1]
[0 1]
See the example in A331197 for the a(3) = 28 case.
A330158
Number of nonnegative integer matrices with total sum n, distinct columns with equal sums and any number of nonzero rows in nonincreasing lexicographic order.
Original entry on oeis.org
1, 3, 4, 13, 8, 83, 16, 530, 630, 5620, 57, 119889, 102, 1901749, 1498322, 50091143, 298, 1649302673, 491, 54919254373, 16723808377, 2269075359300, 1256, 110133775311277, 26852941986, 5707320920415984, 622570195638208, 339574840900645411, 4566, 22572315004012650868
Offset: 1
The a(4) = 13 matrices are:
[1 0 0 0] [1 0] [1] [1 1] [2 0] [1 0] [2]
[0 1 0 0] [1 0] [1] [1 0] [0 1] [1 0] [1]
[0 0 1 0] [0 1] [1] [0 1] [0 1] [0 2] [1]
[0 0 0 1] [0 1] [1]
.
[2 1] [2 0] [1 2] [3] [2] [4]
[0 1] [0 2] [1 0] [1] [2]
Showing 1-8 of 8 results.
Comments