A331039
Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set-systems on a k-set.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 5, 0, 0, 1, 0, 1, 43, 5, 0, 0, 1, 0, 1, 518, 175, 1, 0, 0, 1, 0, 1, 8186, 9426, 272, 0, 0, 0, 1, 0, 1, 163356, 751365, 64453, 205, 0, 0, 0, 1, 0, 1, 3988342, 84012191, 23553340, 248685, 80, 0, 0, 0, 1
Offset: 0
Array begins:
==========================================================
n\k | 0 1 2 3 4 5 6 7
----+-----------------------------------------------------
0 | 1 1 0 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 0 1 5 43 518 8186 163356 ...
3 | 1 0 0 5 175 9426 751365 84012191 ...
4 | 1 0 0 1 272 64453 23553340 13241130441 ...
5 | 1 0 0 0 205 248685 421934358 1176014951129 ...
6 | 1 0 0 0 80 620548 5055634889 69754280936418 ...
7 | 1 0 0 0 15 1057989 43402628681 2972156676325398 ...
...
The A(2,3) = 5 matrices are:
[1 1 1] [1 1 0] [1 1 0] [1 0 1] [1 1 0]
[1 0 0] [1 0 1] [1 0 0] [1 0 0] [1 0 1]
[0 1 0] [0 1 0] [0 1 1] [0 1 1] [0 1 1]
[0 0 1] [0 0 1] [0 0 1] [0 1 0]
The corresponding set-systems are:
{{1,2,3}, {1}, {2}, {3}},
{{1,2}, {1,3}, {2,3}},
{{1,2}, {1,3}, {2}, {3}},
{{1,2}, {1}, {2,3}, {3}},
{{1,3}, {1}, {2,3}, {2}}.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, k<=1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}
A331315
Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k columns and any number of nonzero rows with column sums n and columns in nonincreasing lexicographic order.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 14, 4, 1, 1, 8, 150, 128, 8, 1, 1, 16, 2210, 10848, 1288, 16, 1, 1, 32, 41642, 1796408, 933448, 13472, 32, 1, 1, 64, 956878, 491544512, 1852183128, 85862144, 143840, 64, 1, 1, 128, 25955630, 200901557728, 7805700498776, 2098614254048, 8206774496, 1556480, 128, 1
Offset: 0
Array begins:
====================================================================
n\k | 0 1 2 3 4 5
----+---------------------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 1 1 2 4 8 16 ...
2 | 1 2 14 150 2210 41642 ...
3 | 1 4 128 10848 1796408 491544512 ...
4 | 1 8 1288 933448 1852183128 7805700498776 ...
5 | 1 16 13472 85862144 2098614254048 140102945876710912 ...
6 | 1 32 143840 8206774496 2516804131997152 ...
...
The A(2,2) = 14 matrices are:
[1 0] [1 0] [1 0] [2 0] [1 1] [1 0] [1 0]
[1 0] [0 1] [0 1] [0 1] [1 0] [1 1] [1 0]
[0 1] [1 0] [0 1] [0 1] [0 1] [0 1] [0 2]
[0 1] [0 1] [1 0]
.
[1 0] [1 0] [2 1] [2 0] [1 1] [1 0] [2 2]
[0 2] [0 1] [0 1] [0 2] [1 1] [1 2]
[1 0] [1 1]
The version with binary entries is
A330942.
The version with distinct columns is
A331278.
Other variations considering distinct rows and columns and equivalence under different combinations of permutations of rows and columns are:
-
T(n, k)={my(m=n*k); sum(j=0, m, binomial(binomial(j+n-1, n)+k-1, k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}
A331126
Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set multipartitions (multisets of sets) on a k-set.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 9, 3, 1, 1, 0, 1, 70, 29, 4, 1, 1, 0, 1, 794, 666, 68, 5, 1, 1, 0, 1, 12055, 28344, 3642, 134, 6, 1, 1, 0, 1, 233238, 1935054, 469368, 14951, 237, 7, 1, 1, 0, 1, 5556725, 193926796, 119843417, 5289611, 50985, 388, 8, 1, 1
Offset: 0
Array begins:
====================================================================
n\k | 0 1 2 3 4 5 6 7
----+---------------------------------------------------------------
0 | 1 1 0 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 2 9 70 794 12055 233238 ...
3 | 1 1 3 29 666 28344 1935054 193926796 ...
4 | 1 1 4 68 3642 469368 119843417 53059346010 ...
5 | 1 1 5 134 14951 5289611 4681749424 8639480647842 ...
6 | 1 1 6 237 50985 46241343 134332244907 989821806791367 ...
7 | 1 1 7 388 151901 333750928 3032595328876 85801167516707734 ...
...
The A(2,2) = 2 matrices are:
[1 1] [1 0]
[1 0] [1 0]
[0 1] [0 1]
[0 1]
The corresponding set multipartitions are:
{{1,2}, {1}, {2}},
{{1}, {1}, {2}, {2}}.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, k<=1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p, n, k), [1, n]); s*q[#q-j]))}
A331161
Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k distinct columns and any number of nonzero rows with column sums n and rows in nonincreasing lexicographic order.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 7, 3, 1, 0, 1, 43, 28, 5, 1, 0, 1, 403, 599, 104, 7, 1, 0, 1, 5245, 23243, 6404, 332, 11, 1, 0, 1, 89132, 1440532, 872681, 57613, 1032, 15, 1, 0, 1, 1898630, 131530132, 222686668, 26560747, 473674, 2983, 22, 1
Offset: 0
Array begins:
====================================================================
n\k | 0 1 2 3 4 5 6
----+---------------------------------------------------------------
0 | 1 1 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 ...
2 | 1 2 7 43 403 5245 89132 ...
3 | 1 3 28 599 23243 1440532 131530132 ...
4 | 1 5 104 6404 872681 222686668 95605470805 ...
5 | 1 7 332 57613 26560747 26852940027 52296207431182 ...
6 | 1 11 1032 473674 712725249 2776638423133 ...
7 | 1 15 2983 3599384 17328777789 ...
...
The A(2,2) = 7 matrices are:
[2 1] [2 0] [1 2] [1 1] [2 0] [1 0] [1 0]
[0 1] [0 2] [1 0] [1 0] [0 1] [1 0] [1 0]
[0 1] [0 1] [0 2] [0 1]
[0 1]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(EulerT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, k<=1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p, n, k), [1, n]); s*q[#q-j]))}
A331316
Number of nonnegative integer matrices with n distinct columns and any number of distinct nonzero rows with each column sum being 2 and rows in decreasing lexicographic order.
Original entry on oeis.org
1, 1, 4, 27, 266, 3599, 62941, 1372117, 36248765, 1135864306, 41501271477, 1743624004536, 83268125043937, 4476101995389591, 268589319338401864, 17860954789864760357, 1307982591075162739660, 104895999816356419875935, 9166919404389461922512723
Offset: 0
The a(2) = 4 matrices are:
[2 1] [2 0] [1 2] [1 1]
[0 1] [0 2] [1 0] [1 0]
[0 1]
A331317
Number of nonnegative integer matrices with 2 distinct columns and any number of distinct nonzero rows with each column sum being n and rows in decreasing lexicographic order.
Original entry on oeis.org
0, 1, 4, 15, 44, 120, 319, 804, 1960, 4652, 10782, 24435, 54329, 118663, 254969, 539825, 1127247, 2323811, 4733634, 9535025, 19005218, 37507726, 73333405, 142112298, 273092198, 520612163, 984943887, 1849920530, 3450475858, 6393203485, 11770416017, 21538245911, 39181212114
Offset: 0
-
a(n)={my(p=prod(i=0, n, prod(j=0, n, 1 + x^i*y^j + O(x*x^n) + O(y*y^n))), q=prod(i=1, n, 1 + x^i + O(x*x^n))); polcoef(polcoef(p,n), n)/2 - polcoef(q,n)}
A331344
Number of nonnegative integer matrices with n distinct columns and any number of distinct nonzero rows with each column sum being 3 and rows in decreasing lexicographic order.
Original entry on oeis.org
1, 2, 15, 317, 12586, 803764, 75603729, 9880078404, 1719511013708, 385900586669488, 108870763685147631, 37821200661333033093, 15903952714275755480410, 7978911737260660423782839, 4717171385049289138016854041, 3251403192784472823846341645000
Offset: 0
A331318
Number of nonnegative integer matrices with total sum n, distinct columns with equal sums and any number of distinct nonzero rows in decreasing lexicographic order.
Original entry on oeis.org
1, 2, 3, 7, 4, 47, 6, 317, 326, 3730, 13, 78625, 19, 1372944, 824798, 36641157, 39, 1211620030, 55, 41615035330, 9881046310, 1743624029061, 105, 85034153219895, 10679934643, 4476101995508420, 385900622506127, 268621480352669227, 257, 17969848317035340096
Offset: 1
The a(4) = 7 matrices are:
[1 0 0 0] [1 1] [2 1] [2 0] [1 2] [3] [4]
[0 1 0 0] [1 0] [0 1] [0 2] [1 0] [1]
[0 0 1 0] [0 1]
[0 0 0 1]
Showing 1-8 of 8 results.
Comments