cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A331039 Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set-systems on a k-set.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 5, 0, 0, 1, 0, 1, 43, 5, 0, 0, 1, 0, 1, 518, 175, 1, 0, 0, 1, 0, 1, 8186, 9426, 272, 0, 0, 0, 1, 0, 1, 163356, 751365, 64453, 205, 0, 0, 0, 1, 0, 1, 3988342, 84012191, 23553340, 248685, 80, 0, 0, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 08 2020

Keywords

Comments

An n-regular set-system is a finite set of nonempty sets in which each element appears in n blocks.
A set-system is T_0 if for every two distinct elements there exists a block containing one but not the other element.
A(n,k) is the number of binary matrices with k distinct columns and any number of distinct nonzero rows with n ones in every column and rows in decreasing lexicographic order.

Examples

			Array begins:
==========================================================
n\k | 0 1 2 3   4       5           6                7
----+-----------------------------------------------------
  0 | 1 1 0 0   0       0           0                0 ...
  1 | 1 1 1 1   1       1           1                1 ...
  2 | 1 0 1 5  43     518        8186           163356 ...
  3 | 1 0 0 5 175    9426      751365         84012191 ...
  4 | 1 0 0 1 272   64453    23553340      13241130441 ...
  5 | 1 0 0 0 205  248685   421934358    1176014951129 ...
  6 | 1 0 0 0  80  620548  5055634889   69754280936418 ...
  7 | 1 0 0 0  15 1057989 43402628681 2972156676325398 ...
  ...
The A(2,3) = 5 matrices are:
  [1 1 1]    [1 1 0]    [1 1 0]    [1 0 1]    [1 1 0]
  [1 0 0]    [1 0 1]    [1 0 0]    [1 0 0]    [1 0 1]
  [0 1 0]    [0 1 0]    [0 1 1]    [0 1 1]    [0 1 1]
  [0 0 1]    [0 0 1]    [0 0 1]    [0 1 0]
The corresponding set-systems are:
  {{1,2,3}, {1}, {2}, {3}},
  {{1,2}, {1,3}, {2,3}},
  {{1,2}, {1,3}, {2}, {3}},
  {{1,2}, {1}, {2,3}, {3}},
  {{1,3}, {1}, {2,3}, {2}}.
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, k<=1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}

Formula

A(n, k) = Sum_{j=1..k} Stirling1(k, j)*A188445(n, j) for n, k >= 1.
A(n, k) = 0 for k >= 1, n > 2^(k-1).
A331654(n) = Sum_{d|n} A(n/d, d).

A331315 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k columns and any number of nonzero rows with column sums n and columns in nonincreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 14, 4, 1, 1, 8, 150, 128, 8, 1, 1, 16, 2210, 10848, 1288, 16, 1, 1, 32, 41642, 1796408, 933448, 13472, 32, 1, 1, 64, 956878, 491544512, 1852183128, 85862144, 143840, 64, 1, 1, 128, 25955630, 200901557728, 7805700498776, 2098614254048, 8206774496, 1556480, 128, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2020

Keywords

Comments

The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.
A(n,k) is the number of n-uniform k-block multisets of multisets.

Examples

			Array begins:
====================================================================
n\k | 0  1      2          3                4                  5
----+---------------------------------------------------------------
  0 | 1  1      1          1                1                  1 ...
  1 | 1  1      2          4                8                 16 ...
  2 | 1  2     14        150             2210              41642 ...
  3 | 1  4    128      10848          1796408          491544512 ...
  4 | 1  8   1288     933448       1852183128      7805700498776 ...
  5 | 1 16  13472   85862144    2098614254048 140102945876710912 ...
  6 | 1 32 143840 8206774496 2516804131997152 ...
     ...
The A(2,2) = 14 matrices are:
  [1 0]  [1 0]  [1 0]  [2 0]  [1 1]  [1 0]  [1 0]
  [1 0]  [0 1]  [0 1]  [0 1]  [1 0]  [1 1]  [1 0]
  [0 1]  [1 0]  [0 1]  [0 1]  [0 1]  [0 1]  [0 2]
  [0 1]  [0 1]  [1 0]
.
  [1 0]  [1 0]  [2 1]  [2 0]  [1 1]  [1 0]  [2 2]
  [0 2]  [0 1]  [0 1]  [0 2]  [1 1]  [1 2]
  [1 0]  [1 1]
		

Crossrefs

Rows n=1..2 are A000012, A121227.
Columns k=0..2 are A000012, A011782, A331397.
The version with binary entries is A330942.
The version with distinct columns is A331278.
Other variations considering distinct rows and columns and equivalence under different combinations of permutations of rows and columns are:
All solutions: A316674 (all), A331568 (distinct rows).
Up to row permutation: A219727, A219585, A331161, A331160.
Up to column permutation: this sequence, A331572, A331278, A331570.
Nonisomorphic: A331485.
Cf. A317583.

Programs

  • PARI
    T(n, k)={my(m=n*k); sum(j=0, m, binomial(binomial(j+n-1, n)+k-1, k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}

Formula

A(n,k) = Sum_{j=0..n*k} binomial(binomial(j+n-1,n)+k-1, k) * (Sum_{i=j..n*k} (-1)^(i-j)*binomial(i,j)).
A(n, k) = Sum_{j=0..k} abs(Stirling1(k, j))*A316674(n, j)/k!.
A(n, k) = Sum_{j=0..k} binomial(k-1, k-j)*A331278(n, j).
A(n, k) = A011782(n) * A330942(n, k) for k > 0.
A317583(n) = Sum_{d|n} A(n/d, d).

A331126 Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set multipartitions (multisets of sets) on a k-set.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 9, 3, 1, 1, 0, 1, 70, 29, 4, 1, 1, 0, 1, 794, 666, 68, 5, 1, 1, 0, 1, 12055, 28344, 3642, 134, 6, 1, 1, 0, 1, 233238, 1935054, 469368, 14951, 237, 7, 1, 1, 0, 1, 5556725, 193926796, 119843417, 5289611, 50985, 388, 8, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 10 2020

Keywords

Comments

An n-regular set multipartition is a finite multiset of nonempty sets in which each element appears in n blocks.
A set multipartition is T_0 if for every two distinct elements there exists a block containing one but not the other element.
A(n,k) is the number of binary matrices with k distinct columns and any number of nonzero rows with n ones in every column and rows in nonincreasing lexicographic order.

Examples

			Array begins:
====================================================================
n\k | 0 1 2   3      4         5             6                 7
----+---------------------------------------------------------------
  0 | 1 1 0   0      0         0             0                 0 ...
  1 | 1 1 1   1      1         1             1                 1 ...
  2 | 1 1 2   9     70       794         12055            233238 ...
  3 | 1 1 3  29    666     28344       1935054         193926796 ...
  4 | 1 1 4  68   3642    469368     119843417       53059346010 ...
  5 | 1 1 5 134  14951   5289611    4681749424     8639480647842 ...
  6 | 1 1 6 237  50985  46241343  134332244907   989821806791367 ...
  7 | 1 1 7 388 151901 333750928 3032595328876 85801167516707734 ...
     ...
The A(2,2) = 2 matrices are:
   [1 1]   [1 0]
   [1 0]   [1 0]
   [0 1]   [0 1]
           [0 1]
The corresponding set multipartitions are:
    {{1,2}, {1}, {2}},
    {{1}, {1}, {2}, {2}}.
		

Crossrefs

Rows n=1..3 are A000012, A014500, A331389.
Columns k=0..3 are A000012, A000012, A001477, A331390.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, k<=1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p, n, k), [1, n]); s*q[#q-j]))}

Formula

A(n, k) = Sum_{j=1..k} Stirling1(k, j)*A188392(n, j) for n, k >= 1.
A331391(n) = Sum_{d|n} A(n/d, d).

A331161 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k distinct columns and any number of nonzero rows with column sums n and rows in nonincreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 7, 3, 1, 0, 1, 43, 28, 5, 1, 0, 1, 403, 599, 104, 7, 1, 0, 1, 5245, 23243, 6404, 332, 11, 1, 0, 1, 89132, 1440532, 872681, 57613, 1032, 15, 1, 0, 1, 1898630, 131530132, 222686668, 26560747, 473674, 2983, 22, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 10 2020

Keywords

Comments

The condition that the rows be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of rows

Examples

			Array begins:
====================================================================
n\k | 0  1    2       3           4             5              6
----+---------------------------------------------------------------
  0 | 1  1    0       0           0             0              0 ...
  1 | 1  1    1       1           1             1              1 ...
  2 | 1  2    7      43         403          5245          89132 ...
  3 | 1  3   28     599       23243       1440532      131530132 ...
  4 | 1  5  104    6404      872681     222686668    95605470805 ...
  5 | 1  7  332   57613    26560747   26852940027 52296207431182 ...
  6 | 1 11 1032  473674   712725249 2776638423133 ...
  7 | 1 15 2983 3599384 17328777789 ...
  ...
The A(2,2) = 7 matrices are:
   [2 1]   [2 0]   [1 2]   [1 1]   [2 0]   [1 0]   [1 0]
   [0 1]   [0 2]   [1 0]   [1 0]   [0 1]   [1 0]   [1 0]
                           [0 1]   [0 1]   [0 2]   [0 1]
                                                   [0 1]
		

Crossrefs

Rows n=1..3 are A000012, A014501, A331196.
Columns k=0..2 are A000012, A000041, A331197.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(EulerT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, k<=1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p, n, k), [1, n]); s*q[#q-j]))}

Formula

A(n, k) = Sum_{j=0..k} Stirling1(k, j)*A219727(n, j).
A330158(n) = Sum_{d|n} A(n/d, d).

A331316 Number of nonnegative integer matrices with n distinct columns and any number of distinct nonzero rows with each column sum being 2 and rows in decreasing lexicographic order.

Original entry on oeis.org

1, 1, 4, 27, 266, 3599, 62941, 1372117, 36248765, 1135864306, 41501271477, 1743624004536, 83268125043937, 4476101995389591, 268589319338401864, 17860954789864760357, 1307982591075162739660, 104895999816356419875935, 9166919404389461922512723
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2020

Keywords

Comments

The condition that the rows be in decreasing order is equivalent to considering nonequivalent matrices with distinct rows up to permutation of rows.

Examples

			The a(2) = 4 matrices are:
   [2 1]   [2 0]   [1 2]   [1 1]
   [0 1]   [0 2]   [1 0]   [1 0]
                           [0 1]
		

Crossrefs

Row n=2 of A331160.
Cf. A094574.

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k)*A094574(k).

A331317 Number of nonnegative integer matrices with 2 distinct columns and any number of distinct nonzero rows with each column sum being n and rows in decreasing lexicographic order.

Original entry on oeis.org

0, 1, 4, 15, 44, 120, 319, 804, 1960, 4652, 10782, 24435, 54329, 118663, 254969, 539825, 1127247, 2323811, 4733634, 9535025, 19005218, 37507726, 73333405, 142112298, 273092198, 520612163, 984943887, 1849920530, 3450475858, 6393203485, 11770416017, 21538245911, 39181212114
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2020

Keywords

Comments

The condition that the rows be in decreasing order is equivalent to considering nonequivalent matrices with distinct rows up to permutation of rows.

Crossrefs

Column k=2 of A331160.

Programs

  • PARI
    a(n)={my(p=prod(i=0, n, prod(j=0, n, 1 + x^i*y^j + O(x*x^n) + O(y*y^n))), q=prod(i=1, n, 1 + x^i + O(x*x^n))); polcoef(polcoef(p,n), n)/2 - polcoef(q,n)}

Formula

a(n) = A219554(n) - A000009(n).

A331344 Number of nonnegative integer matrices with n distinct columns and any number of distinct nonzero rows with each column sum being 3 and rows in decreasing lexicographic order.

Original entry on oeis.org

1, 2, 15, 317, 12586, 803764, 75603729, 9880078404, 1719511013708, 385900586669488, 108870763685147631, 37821200661333033093, 15903952714275755480410, 7978911737260660423782839, 4717171385049289138016854041, 3251403192784472823846341645000
Offset: 0

Views

Author

Andrew Howroyd, Jan 14 2020

Keywords

Comments

The condition that the rows be in decreasing order is equivalent to considering nonequivalent matrices with distinct rows up to permutation of rows.

Crossrefs

Row n=3 of A331160.

A331318 Number of nonnegative integer matrices with total sum n, distinct columns with equal sums and any number of distinct nonzero rows in decreasing lexicographic order.

Original entry on oeis.org

1, 2, 3, 7, 4, 47, 6, 317, 326, 3730, 13, 78625, 19, 1372944, 824798, 36641157, 39, 1211620030, 55, 41615035330, 9881046310, 1743624029061, 105, 85034153219895, 10679934643, 4476101995508420, 385900622506127, 268621480352669227, 257, 17969848317035340096
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2020

Keywords

Comments

The condition that the rows be in decreasing order is equivalent to considering nonequivalent matrices with distinct rows up to permutation of rows.

Examples

			The a(4) = 7 matrices are:
  [1 0 0 0]  [1 1]  [2 1]  [2 0]  [1 2]  [3]  [4]
  [0 1 0 0]  [1 0]  [0 1]  [0 2]  [1 0]  [1]
  [0 0 1 0]  [0 1]
  [0 0 0 1]
		

Crossrefs

Formula

a(n) = Sum_{d|n} A331160(n/d, d).
a(p) = A000009(n) + 1 for prime p.
Showing 1-8 of 8 results.