cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 124 results. Next

A007837 Number of partitions of n-set with distinct block sizes.

Original entry on oeis.org

1, 1, 1, 4, 5, 16, 82, 169, 541, 2272, 17966, 44419, 201830, 802751, 4897453, 52275409, 166257661, 840363296, 4321172134, 24358246735, 183351656650, 2762567051857, 10112898715063, 62269802986835, 343651382271526, 2352104168848091, 15649414071734847
Offset: 0

Views

Author

Keywords

Comments

Conjecture: the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. Cf. A185895. - Peter Bala, Mar 17 2022

Examples

			From _Gus Wiseman_, Jul 13 2019: (Start)
The a(1) = 1 through a(5) = 16 set partitions with distinct block sizes:
  {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}    {{1,2,3,4,5}}
                  {{1},{2,3}}  {{1},{2,3,4}}  {{1},{2,3,4,5}}
                  {{1,2},{3}}  {{1,2,3},{4}}  {{1,2},{3,4,5}}
                  {{1,3},{2}}  {{1,2,4},{3}}  {{1,2,3},{4,5}}
                               {{1,3,4},{2}}  {{1,2,3,4},{5}}
                                              {{1,2,3,5},{4}}
                                              {{1,2,4},{3,5}}
                                              {{1,2,4,5},{3}}
                                              {{1,2,5},{3,4}}
                                              {{1,3},{2,4,5}}
                                              {{1,3,4},{2,5}}
                                              {{1,3,4,5},{2}}
                                              {{1,3,5},{2,4}}
                                              {{1,4},{2,3,5}}
                                              {{1,4,5},{2,3}}
                                              {{1,5},{2,3,4}}
(End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),
           d=numtheory[divisors](k))*(n-1)!/(n-k)!*a(n-k), k=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 06 2008
    # second Maple program:
    A007837 := proc(n) option remember; local k; `if`(n = 0, 1,
    add(binomial(n-1, k-1) * A182927(k) * A007837(n-k), k = 1..n)) end:
    seq(A007837(i),i=0..24); # Peter Luschny, Apr 25 2011
  • Mathematica
    nn=20;p=Product[1+x^i/i!,{i,1,nn}];Drop[Range[0,nn]!CoefficientList[ Series[p,{x,0,nn}],x],1]  (* Geoffrey Critzer, Sep 22 2012 *)
    a[0]=1; a[n_] := a[n] = Sum[(n-1)!/(n-k)!*DivisorSum[k, -#*(-#!)^(-k/#)&]* a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2015, after Vladeta Jovovic *)
  • PARI
    {my(n=20); Vec(serlaplace(prod(k=1, n, (1+x^k/k!) + O(x*x^n))))} \\ Andrew Howroyd, Dec 21 2017

Formula

E.g.f.: Product_{m >= 1} (1+x^m/m!).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} (-d)*(-d!)^(-k/d) and a(0) = 1. - Vladeta Jovovic, Oct 13 2002
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*(j!)^k)). - Ilya Gutkovskiy, Jun 18 2018

Extensions

More terms from Christian G. Bower
a(0)=1 prepended by Alois P. Heinz, Aug 29 2015

A035470 Number of ways to break {1,2,3,...,n} into sets with equal sums.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 6, 12, 11, 2, 80, 166, 2, 665, 2918, 3309, 9296, 23730, 31875, 301030, 422897, 2, 13716867, 71504980, 100664385, 54148591, 880696662, 498017759, 27450476787, 111911522819, 179459955554, 2144502175214, 59115423983, 45837019664552, 375743493787258, 816118711787493, 2, 9492169507922
Offset: 1

Views

Author

Keywords

Comments

a(n) = 2 <=> |{d|n*(n+1)/2 : d>=n}| = 2. - Alois P. Heinz, Sep 03 2009

Examples

			a(7) = 6 since we have 1234567, 16/25/34/7, 167/2345, 257/1346, 347/1256, 356/1247.
From _Gus Wiseman_, Jul 13 2019: (Start)
The a(6) = 2 through a(9) = 11 set partitions with equal block-sums:
  {123456}      {1234567}        {12345678}        {123456789}
  {16}{25}{34}  {1247}{356}      {12348}{567}      {12345}{69}{78}
                {1256}{347}      {12357}{468}      {1239}{456}{78}
                {1346}{257}      {12456}{378}      {1248}{357}{69}
                {167}{2345}      {1278}{3456}      {1257}{348}{69}
                {16}{25}{34}{7}  {1368}{2457}      {1347}{258}{69}
                                 {1458}{2367}      {1356}{249}{78}
                                 {1467}{2358}      {159}{2346}{78}
                                 {1236}{48}{57}    {159}{267}{348}
                                 {138}{246}{57}    {168}{249}{357}
                                 {156}{237}{48}    {18}{27}{36}{45}{9}
                                 {18}{27}{36}{45}
(End)
		

Crossrefs

Programs

  • Maple
    with(numtheory): b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(`if`(args[j] -args[nargs] <0, 0, b(sort([seq(args[i] -`if`(i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local i, m, x; m:= n*(n+1)/2; 1+ add(b(i$(m/i), n)/(m/i)!, i=[select(x-> x>=n, divisors(m) minus {m})[]]) end: seq(a(n), n=1..25);  # Alois P. Heinz, Sep 03 2009
  • Mathematica
    b[args_List] := b[args] = If[args[[1]] == 0, If[Length[args] == 2, 1, b[Rest[args]]], Sum[If[args[[j]] - args[[-1]] < 0, 0, b[Sort[Join[Table[ args[[i]] - If[i == j, args[[-1]], 0], {i, 1, Length[args]-1}]]], {args[[-1]]-1}]], {j, 1, Length[args]-1}]]; b[a1_List, a2_List] := b[Join[a1, a2]];
    a[n_] := a[n] = With[{m = n*(n+1)/2}, 1+Sum[b[Append[Array[i&, m/i], n]] / (m/i)!, {i, Select[Divisors[m] ~Complement~ {m}, # >= n &]}]];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 25}] (* Jean-François Alcover, Mar 22 2017, after Alois P. Heinz *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],SameQ@@Total/@#&]],{n,0,10}] (* Gus Wiseman, Jul 13 2019 *)

Extensions

More terms from John W. Layman, Mar 18 2002
a(19)-a(33) from Alois P. Heinz, Sep 03 2009
a(34) from Alois P. Heinz, May 24 2015
a(35)-a(38) from Max Alekseyev, Feb 15 2024

A306017 Number of non-isomorphic multiset partitions of weight n in which all parts have the same size.

Original entry on oeis.org

1, 1, 4, 6, 17, 14, 66, 30, 189, 222, 550, 112, 4696, 202, 5612, 30914, 63219, 594, 453125, 980, 3602695, 5914580, 1169348, 2510, 299083307, 232988061, 23248212, 2669116433, 14829762423, 9130, 170677509317, 13684, 1724710753084, 2199418340875, 14184712185, 38316098104262
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

A multiset partition of weight n is a finite multiset of finite nonempty multisets whose sizes sum to n.
Number of distinct nonnegative integer matrices with all row sums equal and total sum n up to row and column permutations. - Andrew Howroyd, Sep 05 2018
From Gus Wiseman, Oct 11 2018: (Start)
Also the number of non-isomorphic multiset partitions of weight n in which each vertex appears the same number of times. For n = 4, non-isomorphic representatives of these 17 multiset partitions are:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,3,4}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{1},{2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{3,4}}
{{1},{1},{1,1}}
{{1},{1},{2,2}}
{{1},{2},{1,2}}
{{1},{2},{3,4}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{3},{4}}
(End)

Examples

			Non-isomorphic representatives of the a(4) = 17 multiset partitions:
  {{1,1,1,1}}
  {{1,1,2,2}}
  {{1,2,2,2}}
  {{1,2,3,3}}
  {{1,2,3,4}}
  {{1,1},{1,1}}
  {{1,1},{2,2}}
  {{1,2},{1,2}}
  {{1,2},{2,2}}
  {{1,2},{3,3}}
  {{1,2},{3,4}}
  {{1,3},{2,3}}
  {{1},{1},{1},{1}}
  {{1},{1},{2},{2}}
  {{1},{2},{2},{2}}
  {{1},{2},{3},{3}}
  {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    K[q_List, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
    RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[K[q, t, k]/t*x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
    a[n_] := a[n] = If[n==0, 1, If[PrimeQ[n], 2 PartitionsP[n], Sum[ RowSumMats[ n/d, n, d], {d, Divisors[n]}]]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 07 2019, after Andrew Howroyd *)
  • PARI
    \\ See A318951 for RowSumMats.
    a(n)={sumdiv(n,d,RowSumMats(n/d,n,d))} \\ Andrew Howroyd, Sep 05 2018

Formula

For p prime, a(p) = 2*A000041(p).
a(n) = Sum_{d|n} A331485(n/d, d). - Andrew Howroyd, Feb 09 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 05 2018

A305551 Number of partitions of partitions of n where all partitions have the same sum.

Original entry on oeis.org

1, 1, 3, 4, 9, 8, 22, 16, 43, 41, 77, 57, 201, 102, 264, 282, 564, 298, 1175, 491, 1878, 1509, 2611, 1256, 7872, 2421, 7602, 8026, 16304, 4566, 38434, 6843, 48308, 41078, 56582, 28228, 221115, 21638, 146331, 208142, 453017, 44584, 844773, 63262, 1034193, 1296708
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2018

Keywords

Examples

			The a(4) = 9 partitions of partitions where all partitions have the same sum:
(4), (31), (22), (211), (1111),
(2)(2), (2)(11), (11)(11),
(1)(1)(1)(1).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[PartitionsP[n/k]+k-1,k],{k,Divisors[n]}],{n,60}]
  • PARI
    a(n)={if(n<1, n==0, sumdiv(n, d, binomial(numbpart(n/d) + d - 1, d)))} \\ Andrew Howroyd, Jun 22 2018

Formula

a(n) = Sum_{d|n} binomial(A000041(n/d) + d - 1, d).

A055225 a(n) = Sum_{k divides n} (n/k)^k.

Original entry on oeis.org

1, 3, 4, 9, 6, 24, 8, 41, 37, 68, 12, 258, 14, 192, 384, 593, 18, 1557, 20, 2794, 2552, 2192, 24, 16730, 3151, 8388, 20440, 35394, 30, 116474, 32, 135457, 178512, 131396, 94968, 1111035, 38, 524688, 1596560, 2530986, 42, 7280934, 44, 8403778
Offset: 1

Views

Author

Leroy Quet, Jun 20 2000

Keywords

Comments

a(n) is the number of (nonempty) linear partitions of the linearly ordered set [n] = {1,2,...,n} with blocks of the same size, where each block has exactly one element marked. For instance, for n = 4, we have the following 9 linear partitions (where the marked elements are denoted by *):
. (*)(*)(*)(*), (*2)(*4), (*234),
. (*2)(3*), (1*34),
. (1*)(*4), (12*4),
. (1*)(3*), (123*).
- Emanuele Munarini, Feb 03 2014

Examples

			a(10) = 10^1 + 5^2 + 2^5 + 1^10 = 68 because positive divisors of 10 are 1, 2, 5, 10.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Quotient[n, x = Divisors[n]]^x], {n, 44}] (* Jayanta Basu, Jul 08 2013 *)
    Table[Sum[d^(n/d), {d, Divisors[n]}], {n, 1, 100}] (* Emanuele Munarini, Feb 03 2014 *)
  • Maxima
    a(n) := lsum(d^(n/d), d, listify(divisors(n))); makelist(a(n), n, 1, 40); /* Emanuele Munarini, Feb 03 2014 */
  • PARI
    vector(44, n, sumdiv(n, d, (n/d)^d))
    
  • PARI
    a(n) = sumdiv(n,d, d^(n/d) ); \\ Joerg Arndt, Apr 14 2013
    

Formula

G.f.: Sum_{n>=1} -log(1 - n*x^n)/n = Sum_{n>=0} a(n) x^n/n. - Paul D. Hanna, Aug 04 2002
G.f.: Sum_{n>0} n*x^n/(1-n*x^n). - Vladeta Jovovic, Sep 02 2002
Sum_{k=1..n} a(k) ~ 3^((n + 3 - mod(n,3))/3)/2. - Vaclav Kotesovec, Aug 07 2022

Extensions

More terms from James Sellers, Jul 04 2000
Duplicate g.f. removed by Franklin T. Adams-Watters, Sep 01 2009

A321455 Number of ways to factor n into factors > 1 all having the same sum of prime indices.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

Also the number of multiset partitions of the multiset of prime indices of n with equal block-sums.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).

Examples

			The a(1440) = 6 factorizations into factors all having the same sum of prime indices:
  (10*12*12)
  (5*6*6*8)
  (9*10*16)
  (30*48)
  (36*40)
  (1440)
The a(900) = 5 multiset partitions with equal block-sums:
  {{1,1,2,2,3,3}}
  {{3,3},{1,1,2,2}}
  {{1,2,3},{1,2,3}}
  {{1,3},{1,3},{2,2}}
  {{3},{3},{1,2},{1,2}}
		

Crossrefs

Positions of 1's are A321453. Positions of terms > 1 are A321454.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],SameQ@@hwt/@#&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_same_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == 1));
    A321455(n, m=n, facs=List([])) = if(1==n, all_have_same_sum_of_pis(facs), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A321455(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A306021 Number of set-systems spanning {1,...,n} in which all sets have the same size.

Original entry on oeis.org

1, 1, 2, 6, 54, 1754, 1102746, 68715913086, 1180735735356265746734, 170141183460507906731293351306656207090, 7237005577335553223087828975127304177495735363998991435497132232365910414322
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

a(n) is the number of labeled uniform hypergraphs spanning n vertices. - Andrew Howroyd, Jan 16 2024

Examples

			The a(3) = 6 set-systems in which all sets have the same size:
  {{1,2,3}}
  {{1}, {2}, {3}}
  {{1,2}, {1,3}}
  {{1,2}, {2,3}}
  {{1,3}, {2,3}}
  {{1,2}, {1,3}, {2,3}}
		

Crossrefs

Row sums of A299471.
The unlabeled version is A301481.
The connected version is A299353.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n,k]*(1+Sum[2^Binomial[k,d]-1,{d,k}]),{k,0,n}],{n,12}]
  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, sum(d=0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)))) \\ Andrew Howroyd, Jan 16 2024

Formula

a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(1 - k + Sum_{d = 1..k} 2^binomial(k, d)).
Inverse binomial transform of A306020. - Andrew Howroyd, Jan 16 2024

A321469 Number of factorizations of n into factors > 1 with different sums of prime indices. Number of multiset partitions of the multiset of prime indices of n with distinct block-sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 6, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 2, 4, 2, 5, 1, 3, 2, 4, 1, 8, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 7, 2, 2, 2, 5, 1, 7, 2, 3, 2, 2, 2, 8, 1, 3, 3, 5, 1, 5, 1, 5, 5
Offset: 1

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).

Examples

			The a(72) = 8 multiset partitions with distinct block-sums:
    {{1,1,1,2,2}}
   {{1},{1,1,2,2}}
   {{2},{1,1,1,2}}
   {{1,1},{1,2,2}}
   {{1,2},{1,1,2}}
   {{2,2},{1,1,1}}
  {{1},{2},{1,1,2}}
  {{1},{1,1},{2,2}}
Missing from this list are:
    {{1},{1},{1,2,2}}
    {{1},{1,2},{1,2}}
    {{2},{2},{1,1,1}}
    {{2},{1,1},{1,2}}
   {{1},{1},{1},{2,2}}
   {{1},{1},{2},{1,2}}
   {{1},{2},{2},{1,1}}
  {{1},{1},{1},{2},{2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[primeMS[n]],UnsameQ@@Sort[Total/@#]&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_different_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == #facs));
    A321469(n, m=n, facs=List([])) = if(1==n, all_have_different_sum_of_pis(facs), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A321469(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A326534 MM-numbers of multiset partitions where every part has the same sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 175, 179, 181, 191
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

First differs from A298538 in lacking 187.
These are numbers where each prime index has the same sum of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where every part has the same sum, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  16: {{},{},{},{}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
  35: {{2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@primeMS/@primeMS[#]&]

A275780 Number of set partitions of [n] into blocks with distinct element sums.

Original entry on oeis.org

1, 1, 2, 4, 12, 43, 160, 668, 3098, 15465, 83100, 477651, 2914505, 18795814, 127790544, 911448954, 6808162094, 53067398065, 430956571977, 3636314065247, 31841519540324, 288664242344692, 2706949104147162, 26205222185730884, 261681461422075548, 2691088457402830312
Offset: 0

Views

Author

Alois P. Heinz, Aug 08 2016

Keywords

Examples

			a(3) = 4: 123, 13|2, 1|23, 1|2|3.
a(4) = 12: 1234, 123|4, 124|3, 12|34, 134|2, 13|24, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],UnsameQ@@Total/@#&]],{n,0,10}] (* Gus Wiseman, Jul 13 2019 *)

Formula

a(n) = A000110(n) - A275781(n).

Extensions

a(17)-a(25) from Christian Sievers, Aug 20 2024
Showing 1-10 of 124 results. Next