cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 67 results. Next

A038041 Number of ways to partition an n-set into subsets of equal size.

Original entry on oeis.org

1, 2, 2, 5, 2, 27, 2, 142, 282, 1073, 2, 32034, 2, 136853, 1527528, 4661087, 2, 227932993, 2, 3689854456, 36278688162, 13749663293, 2, 14084955889019, 5194672859378, 7905858780927, 2977584150505252, 13422745388226152, 2, 1349877580746537123, 2
Offset: 1

Views

Author

Keywords

Comments

a(n) = 2 iff n is prime with a(p) = card{ 1|2|3|...|p-1|p, 123...p } = 2. - Bernard Schott, May 16 2019

Examples

			a(4) = card{ 1|2|3|4, 12|34, 14|23, 13|24, 1234 } = 5.
From _Gus Wiseman_, Jul 12 2019: (Start)
The a(6) = 27 set partitions:
  {{1}{2}{3}{4}{5}{6}}  {{12}{34}{56}}  {{123}{456}}  {{123456}}
                        {{12}{35}{46}}  {{124}{356}}
                        {{12}{36}{45}}  {{125}{346}}
                        {{13}{24}{56}}  {{126}{345}}
                        {{13}{25}{46}}  {{134}{256}}
                        {{13}{26}{45}}  {{135}{246}}
                        {{14}{23}{56}}  {{136}{245}}
                        {{14}{25}{36}}  {{145}{236}}
                        {{14}{26}{35}}  {{146}{235}}
                        {{15}{23}{46}}  {{156}{234}}
                        {{15}{24}{36}}
                        {{15}{26}{34}}
                        {{16}{23}{45}}
                        {{16}{24}{35}}
                        {{16}{25}{34}}
(End)
		

Crossrefs

Cf. A061095 (same but with labeled boxes), A005225, A236696, A055225, A262280, A262320.
Column k=1 of A208437.
Row sums of A200472 and A200473.
Cf. A000110, A007837 (different lengths), A035470 (equal sums), A275780, A317583, A320324, A322794, A326512 (equal averages), A326513.

Programs

  • Maple
    A038041 := proc(n) local d;
    add(n!/(d!*(n/d)!^d), d = numtheory[divisors](n)) end:
    seq(A038041(n),n = 1..29); # Peter Luschny, Apr 16 2011
  • Mathematica
    a[n_] := Block[{d = Divisors@ n}, Plus @@ (n!/(#! (n/#)!^#) & /@ d)]; Array[a, 29] (* Robert G. Wilson v, Apr 16 2011 *)
    Table[Sum[n!/((n/d)!*(d!)^(n/d)), {d, Divisors[n]}], {n, 1, 31}] (* Emanuele Munarini, Jan 30 2014 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],SameQ@@Length/@#&]],{n,0,8}] (* Gus Wiseman, Jul 12 2019 *)
  • Maxima
    a(n):= lsum(n!/((n/d)!*(d!)^(n/d)),d,listify(divisors(n)));
    makelist(a(n),n,1,40); /* Emanuele Munarini, Feb 03 2014 */
    
  • PARI
    /* compare to A061095 */
    mnom(v)=
    /* Multinomial coefficient s! / prod(j=1, n, v[j]!) where
      s= sum(j=1, n, v[j]) and n is the number of elements in v[]. */
    sum(j=1, #v, v[j])! / prod(j=1, #v, v[j]!)
    A038041(n)={local(r=0);fordiv(n,d,r+=mnom(vector(d,j,n/d))/d!);return(r);}
    vector(33,n,A038041(n)) /* Joerg Arndt, Apr 16 2011 */
    
  • Python
    import math
    def a(n):
        count = 0
        for k in range(1, n + 1):
            if n % k == 0:
                count += math.factorial(n) // (math.factorial(k) ** (n // k) * math.factorial(n // k))
        return count # Paul Muljadi, Sep 25 2024

Formula

a(n) = Sum_{d divides n} (n!/(d!*((n/d)!)^d)).
E.g.f.: Sum_{k >= 1} (exp(x^k/k!)-1).

Extensions

More terms from Erich Friedman

A007837 Number of partitions of n-set with distinct block sizes.

Original entry on oeis.org

1, 1, 1, 4, 5, 16, 82, 169, 541, 2272, 17966, 44419, 201830, 802751, 4897453, 52275409, 166257661, 840363296, 4321172134, 24358246735, 183351656650, 2762567051857, 10112898715063, 62269802986835, 343651382271526, 2352104168848091, 15649414071734847
Offset: 0

Views

Author

Keywords

Comments

Conjecture: the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. Cf. A185895. - Peter Bala, Mar 17 2022

Examples

			From _Gus Wiseman_, Jul 13 2019: (Start)
The a(1) = 1 through a(5) = 16 set partitions with distinct block sizes:
  {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}    {{1,2,3,4,5}}
                  {{1},{2,3}}  {{1},{2,3,4}}  {{1},{2,3,4,5}}
                  {{1,2},{3}}  {{1,2,3},{4}}  {{1,2},{3,4,5}}
                  {{1,3},{2}}  {{1,2,4},{3}}  {{1,2,3},{4,5}}
                               {{1,3,4},{2}}  {{1,2,3,4},{5}}
                                              {{1,2,3,5},{4}}
                                              {{1,2,4},{3,5}}
                                              {{1,2,4,5},{3}}
                                              {{1,2,5},{3,4}}
                                              {{1,3},{2,4,5}}
                                              {{1,3,4},{2,5}}
                                              {{1,3,4,5},{2}}
                                              {{1,3,5},{2,4}}
                                              {{1,4},{2,3,5}}
                                              {{1,4,5},{2,3}}
                                              {{1,5},{2,3,4}}
(End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),
           d=numtheory[divisors](k))*(n-1)!/(n-k)!*a(n-k), k=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 06 2008
    # second Maple program:
    A007837 := proc(n) option remember; local k; `if`(n = 0, 1,
    add(binomial(n-1, k-1) * A182927(k) * A007837(n-k), k = 1..n)) end:
    seq(A007837(i),i=0..24); # Peter Luschny, Apr 25 2011
  • Mathematica
    nn=20;p=Product[1+x^i/i!,{i,1,nn}];Drop[Range[0,nn]!CoefficientList[ Series[p,{x,0,nn}],x],1]  (* Geoffrey Critzer, Sep 22 2012 *)
    a[0]=1; a[n_] := a[n] = Sum[(n-1)!/(n-k)!*DivisorSum[k, -#*(-#!)^(-k/#)&]* a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2015, after Vladeta Jovovic *)
  • PARI
    {my(n=20); Vec(serlaplace(prod(k=1, n, (1+x^k/k!) + O(x*x^n))))} \\ Andrew Howroyd, Dec 21 2017

Formula

E.g.f.: Product_{m >= 1} (1+x^m/m!).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} (-d)*(-d!)^(-k/d) and a(0) = 1. - Vladeta Jovovic, Oct 13 2002
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*(j!)^k)). - Ilya Gutkovskiy, Jun 18 2018

Extensions

More terms from Christian G. Bower
a(0)=1 prepended by Alois P. Heinz, Aug 29 2015

A006827 Number of partitions of 2n with all subsums different from n.

Original entry on oeis.org

1, 2, 5, 8, 17, 24, 46, 64, 107, 147, 242, 302, 488, 629, 922, 1172, 1745, 2108, 3104, 3737, 5232, 6419, 8988, 10390, 14552, 17292, 23160, 27206, 36975, 41945, 57058, 65291, 85895, 99384, 130443, 145283, 193554, 218947, 281860, 316326, 413322, 454229, 594048
Offset: 1

Views

Author

Keywords

Comments

Partitions of this type are also called non-biquanimous partitions. - Gus Wiseman, Apr 19 2024

Examples

			From _Gus Wiseman_, Apr 19 2024: (Start)
The a(1) = 1 through a(5) = 17 partitions (A = 10):
  (2)  (4)   (6)    (8)     (A)
       (31)  (42)   (53)    (64)
             (51)   (62)    (73)
             (222)  (71)    (82)
             (411)  (332)   (91)
                    (521)   (433)
                    (611)   (442)
                    (5111)  (622)
                            (631)
                            (721)
                            (811)
                            (3331)
                            (4222)
                            (6211)
                            (7111)
                            (22222)
                            (61111)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The complement is counted by A002219, ranks A357976.
Central diagonal of A046663.
The strict case is A321142, even bisection of A371794 (odd A078408).
This is the "bi-" version of A321451, ranks A321453.
Column k = 0 of A367094.
These partitions have Heinz numbers A371731.
Even bisection of A371795 (odd A058695).
A371783 counts k-quanimous partitions.

Programs

  • Maple
    b:= proc(n, i, s) option remember;
          `if`(0 in s or n in s, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, s)+
          `if`(i<=n, b(n-i, i, select(y-> 0<=y and y<=n-i,
                     map(x-> [x, x-i][], s))), 0))))
        end:
    a:= n-> b(2*n, 2*n, {n}):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 10 2012
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; a[n_] := b[2*n, 2*n, {n}]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Nov 12 2013, after Alois P. Heinz *)
  • Python
    from itertools import combinations_with_replacement
    from collections import Counter
    from sympy import npartitions
    from sympy.utilities.iterables import partitions
    def A006827(n): return npartitions(n<<1)-len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)),2)}) # Chai Wah Wu, Sep 20 2023

Formula

a(n) = A000041(2*n) - A002219(n).
a(n) = A046663(2*n,n).

Extensions

More terms from Don Reble, Nov 03 2001
More terms from Alois P. Heinz, Jul 10 2012

A321455 Number of ways to factor n into factors > 1 all having the same sum of prime indices.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

Also the number of multiset partitions of the multiset of prime indices of n with equal block-sums.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).

Examples

			The a(1440) = 6 factorizations into factors all having the same sum of prime indices:
  (10*12*12)
  (5*6*6*8)
  (9*10*16)
  (30*48)
  (36*40)
  (1440)
The a(900) = 5 multiset partitions with equal block-sums:
  {{1,1,2,2,3,3}}
  {{3,3},{1,1,2,2}}
  {{1,2,3},{1,2,3}}
  {{1,3},{1,3},{2,2}}
  {{3},{3},{1,2},{1,2}}
		

Crossrefs

Positions of 1's are A321453. Positions of terms > 1 are A321454.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],SameQ@@hwt/@#&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_same_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == 1));
    A321455(n, m=n, facs=List([])) = if(1==n, all_have_same_sum_of_pis(facs), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A321455(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A326534 MM-numbers of multiset partitions where every part has the same sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 175, 179, 181, 191
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

First differs from A298538 in lacking 187.
These are numbers where each prime index has the same sum of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where every part has the same sum, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  16: {{},{},{},{}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
  35: {{2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@primeMS/@primeMS[#]&]

A275780 Number of set partitions of [n] into blocks with distinct element sums.

Original entry on oeis.org

1, 1, 2, 4, 12, 43, 160, 668, 3098, 15465, 83100, 477651, 2914505, 18795814, 127790544, 911448954, 6808162094, 53067398065, 430956571977, 3636314065247, 31841519540324, 288664242344692, 2706949104147162, 26205222185730884, 261681461422075548, 2691088457402830312
Offset: 0

Views

Author

Alois P. Heinz, Aug 08 2016

Keywords

Examples

			a(3) = 4: 123, 13|2, 1|23, 1|2|3.
a(4) = 12: 1234, 123|4, 124|3, 12|34, 134|2, 13|24, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],UnsameQ@@Total/@#&]],{n,0,10}] (* Gus Wiseman, Jul 13 2019 *)

Formula

a(n) = A000110(n) - A275781(n).

Extensions

a(17)-a(25) from Christian Sievers, Aug 20 2024

A064914 Number of ordered biquanimous partitions of 2n.

Original entry on oeis.org

1, 1, 5, 23, 105, 449, 1902, 7828, 31976, 129200, 520425, 2088217, 8371186, 33514797, 134140430, 536699674, 2147154667, 8589198795, 34358341823, 137435830265, 549749857574, 2199010044813, 8796067657649, 35184315676573, 140737380485376, 562949713881526
Offset: 0

Views

Author

Christian G. Bower, Oct 12 2001

Keywords

Comments

A biquanimous partition is one that can be bisected into two equal sized parts: e.g. 3+2+1 is a biquanimous partition of 6 as it contains 3 and 2+1, but 5+1 is not.

Examples

			From _Gus Wiseman_, Apr 19 2024: (Start)
The a(0) = 1 through a(3) = 23 biquanimous compositions:
  ()  (11)  (22)    (33)
            (112)   (123)
            (121)   (132)
            (211)   (213)
            (1111)  (231)
                    (312)
                    (321)
                    (1113)
                    (1122)
                    (1131)
                    (1212)
                    (1221)
                    (1311)
                    (2112)
                    (2121)
                    (2211)
                    (3111)
                    (11112)
                    (11121)
                    (11211)
                    (12111)
                    (21111)
                    (111111)
(End)
		

Crossrefs

The unordered version (integer partitions) is A002219, ranks A357976.
The unordered complement is A371795, even case A006827, ranks A371731.
The complement is counted by A371956.
These compositions have ranks A372120, complement A372119.
A237258 (aerated) counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[2n], MemberQ[Total/@Subsets[#],n]&]],{n,0,5}] (* Gus Wiseman, Apr 19 2024 *)

Extensions

More terms from Alois P. Heinz, Jun 12 2017

A326518 Number of normal multiset partitions of weight n where every part has the same sum.

Original entry on oeis.org

1, 1, 3, 7, 15, 31, 75, 169, 445, 1199, 3471
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(4) = 15 normal multiset partitions:
  {}  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
             {{1,2}}    {{1,1,2}}      {{1,1,1,2}}
             {{1},{1}}  {{1,2,2}}      {{1,1,2,2}}
                        {{1,2,3}}      {{1,1,2,3}}
                        {{2},{1,1}}    {{1,2,2,2}}
                        {{3},{1,2}}    {{1,2,2,3}}
                        {{1},{1},{1}}  {{1,2,3,3}}
                                       {{1,2,3,4}}
                                       {{1,1},{1,1}}
                                       {{1,2},{1,2}}
                                       {{1,3},{2,2}}
                                       {{1,4},{2,3}}
                                       {{2},{2},{1,1}}
                                       {{3},{3},{1,2}}
                                       {{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],SameQ@@Total/@#&]],{n,0,5}]

Extensions

a(10) from Robert Price, Apr 04 2025

A371783 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n that can be partitioned into d = A027750(n,k) blocks with equal sums.

Original entry on oeis.org

1, 2, 1, 3, 1, 5, 3, 1, 7, 1, 11, 6, 4, 1, 15, 1, 22, 14, 5, 1, 30, 10, 1, 42, 25, 6, 1, 56, 1, 77, 53, 30, 15, 7, 1, 101, 1, 135, 89, 8, 1, 176, 65, 21, 1, 231, 167, 55, 9, 1, 297, 1, 385, 278, 173, 28, 10, 1, 490, 1, 627, 480, 140, 91, 11, 1, 792, 343, 36, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 14 2024

Keywords

Comments

These could be called d-quanimous partitions, cf. A002219, A064914, A321452.

Examples

			Triangle begins:
    1
    2   1
    3   1
    5   3   1
    7   1
   11   6   4   1
   15   1
   22  14   5   1
   30  10   1
   42  25   6   1
   56   1
   77  53  30  15   7   1
  101   1
  135  89   8   1
  176  65  21   1
Row n = 6 counts the following partitions:
  (6)       (33)      (222)     (111111)
  (33)      (321)     (2211)
  (42)      (2211)    (21111)
  (51)      (3111)    (111111)
  (222)     (21111)
  (321)     (111111)
  (411)
  (2211)
  (3111)
  (21111)
  (111111)
		

Crossrefs

Row lengths are A000005.
Column k = 1 is A000041.
Inserting zeros gives A371954.
Row sums are A372121.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371736 counts non-quanimous strict partitons, complement A371737.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}}, Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]];
    Table[Length[Select[IntegerPartitions[n], Select[facs[Times@@Prime/@#], Length[#]==k&&SameQ@@hwt/@#&]!={}&]],{n,1,8},{k,Divisors[n]}]

Extensions

More terms from Jinyuan Wang, Feb 13 2025
Name edited by Peter Munn, Mar 05 2025

A371795 Number of non-biquanimous integer partitions of n.

Original entry on oeis.org

0, 1, 1, 3, 2, 7, 5, 15, 8, 30, 17, 56, 24, 101, 46, 176, 64, 297, 107, 490, 147, 792, 242, 1255, 302, 1958, 488, 3010, 629, 4565, 922, 6842, 1172, 10143, 1745, 14883, 2108, 21637, 3104, 31185, 3737, 44583, 5232, 63261, 6419, 89134, 8988, 124754, 10390, 173525
Offset: 0

Views

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The a(1) = 1 through a(8) = 8 partitions:
  (1)  (2)  (3)    (4)   (5)      (6)    (7)        (8)
            (21)   (31)  (32)     (42)   (43)       (53)
            (111)        (41)     (51)   (52)       (62)
                         (221)    (222)  (61)       (71)
                         (311)    (411)  (322)      (332)
                         (2111)          (331)      (521)
                         (11111)         (421)      (611)
                                         (511)      (5111)
                                         (2221)
                                         (3211)
                                         (4111)
                                         (22111)
                                         (31111)
                                         (211111)
                                         (1111111)
		

Crossrefs

The complement is counted by A002219 aerated, ranks A357976.
Even bisection is A006827, odd A058695.
The strict complement is A237258, ranks A357854.
This is the "bi-" version of A321451, ranks A321453.
The complement is the "bi-" version of A321452, ranks A321454.
These partitions have ranks A371731.
The strict case is A371794, bisections A321142, A078408.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371736 counts non-quanimous strict partitons, complement A371737.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371783 counts k-quanimous partitions.
A371789 counts non-quanimous sets, differences A371790.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[IntegerPartitions[n],Not@*biqQ]],{n,0,15}]
  • PARI
    a(n) = if(n%2, numbpart(n), my(v=partitions(n/2), w=List([])); for(i=1, #v, for(j=1, i, listput(w, vecsort(concat(v[i], v[j]))))); numbpart(n)-#Set(w)); \\ Jinyuan Wang, Feb 13 2025

Extensions

More terms from Jinyuan Wang, Feb 13 2025
Showing 1-10 of 67 results. Next