A317584 Number of multiset partitions of strongly normal multisets of size n such that all blocks have the same size.
1, 4, 6, 19, 14, 113, 30, 584, 1150, 4023, 112, 119866, 202, 432061, 5442765, 16646712, 594, 738090160, 980, 13160013662, 113864783987, 39049423043, 2510, 44452496723053, 19373518220009, 21970704599961, 8858890258339122, 43233899006497146, 9130, 4019875470540832643
Offset: 1
Keywords
Examples
The a(4) = 19 multiset partitions: {{1,1,1,1}}, {{1,1},{1,1}}, {{1},{1},{1},{1}}, {{1,1,1,2}}, {{1,1},{1,2}}, {{1},{1},{1},{2}}, {{1,1,2,2}}, {{1,1},{2,2}}, {{1,2},{1,2}}, {{1},{1},{2},{2}}, {{1,1,2,3}}, {{1,1},{2,3}}, {{1,2},{1,3}}, {{1},{1},{2},{3}}, {{1,2,3,4}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}}, {{1},{2},{3},{4}}.
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Length[Select[Join@@mps/@strnorm[n],SameQ@@Length/@#&]],{n,6}]
-
PARI
\\ See links in A339645 for combinatorial species functions. cycleIndex(n)={sum(n=1, n, x^n*sumdiv(n, d, sApplyCI(symGroupCycleIndex(d), d, symGroupCycleIndex(n/d), n/d))) + O(x*x^n)} StronglyNormalLabelingsSeq(cycleIndex(15)) \\ Andrew Howroyd, Jan 01 2021
Formula
a(p) = 2*A000041(p) for prime p. - Andrew Howroyd, Jan 01 2021
Extensions
Terms a(9) and beyond from Andrew Howroyd, Jan 01 2021
Comments