A317587 a(n) is the smallest number m > n such that Sum_{k=1..n-1} k^(m-1) == n-1 (mod m).
3, 5, 5, 6, 7, 11, 11, 11, 11, 13, 13, 16, 17, 17, 17, 19, 19, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 31, 31, 37, 37, 37, 36, 37, 37, 40, 41, 41, 41, 43, 43, 47, 47, 47, 47, 53, 53, 53, 53, 53, 53, 59, 59, 59, 59, 59, 59, 61, 61, 67, 67, 67, 67, 67, 67, 71, 71, 71, 71
Offset: 2
Keywords
Programs
-
Mathematica
Array[Block[{m = # + 1}, While[Mod[Sum[k^(m - 1), {k, # - 1}], m] != # - 1, m++]; m] &, 69, 2] (* Michael De Vlieger, Aug 02 2018 *)
-
PARI
a(n) = for(m=n+1, oo, if (sum(k=1, n-1, Mod(k, m)^(m-1)) == Mod(n-1, m), return (m)); ); \\ Michel Marcus, Aug 01 2018
Extensions
More terms from Michel Marcus, Aug 01 2018
Comments