A317660 Denominator of the coefficient of z^(-n) of asymptotic expansions related to hyperfactorial function H(z).
1, 1, 1, 720, 1, 5040, 1036800, 10080, 3628800, 24634368000, 6350400, 747242496000, 3476402012160000, 105670656000, 11298306539520000, 1489290622009344000000, 2259661307904000, 6688268793387417600000, 920024174652492349440000000, 8655406673795481600000
Offset: 0
Examples
1^1*2^2*...*n^n ~ A*n^(n^2/2 + n/2 + 1/12)*exp(-n^2/4)*(1 + 1/(720*n^3) - 1/(5040*n^5) + 1/(1036800*n^6) + 1/(10080*n^7) - 1/(3628800*n^8) - 2591989/(24634368000*n^9) + ... )^n.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..362
- Chao-Ping Chen, Asymptotic expansions for Barnes G-function, Journal of Number Theory 135 (2014) 36-42.
- Eric Weisstein's World of Mathematics, Hyperfactorial
Formula
Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (-1/n) * Sum_{k=0..n-2} B_{n-k+1}*c_k/((n-k-1)*(n-k+1)) for n > 0.
a(n) is the denominator of c_n.
Comments