cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317644 Triangle read by rows: multiplicative version of Pascal's triangle except n-th row begins and ends with (n+1)-st prime.

Original entry on oeis.org

2, 3, 3, 5, 9, 5, 7, 45, 45, 7, 11, 315, 2025, 315, 11, 13, 3465, 637875, 637875, 3465, 13, 17, 45045, 2210236875, 406884515625, 2210236875, 45045, 17, 19, 765765, 99560120034375, 899311160300888671875, 899311160300888671875, 99560120034375, 765765, 19, 23, 14549535, 76239655318123171875, 89535527067809533413858673095703125, 808760563041730681160065242862701416015625, 89535527067809533413858673095703125, 76239655318123171875, 14549535, 23
Offset: 0

Views

Author

Philipp O. Tsvetkov, Aug 02 2018

Keywords

Examples

			Triangle begins:
   2;
   3,      3;
   5,      9,      5;
   7,     45,     45,      7;
  11,    315,   2025,    315,     11;
  13,   3465, 637875, 637875,   3465,     13;
  ...
Formatted as a symmetric triangle:
.
                       2
.
                   3       3
.
               5       9       5
.
           7      45      45       7
.
      11      315    2025     315     11
.
  13     3465   637875  637875   3465     13
...
		

Crossrefs

Programs

  • Mathematica
    t = {{2}};
    Table[AppendTo[
        t, {Prime[i],
          Table[
           t[[i - 1]][[j]]*t[[i - 1]][[j + 1]], {j,
            1, (t[[i - 1]] // Length) - 1}], Prime[i]} // Flatten], {i, 2, 10}] //
       Last // Flatten
    t={}; Do[r={}; Do[If[k==0||k==n, m=Prime[n + 1], m=t[[n, k]]t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t (* Vincenzo Librandi, Sep 03 2018 *)

Formula

From Rémy Sigrist, Sep 02 2018: (Start)
A007949(T(n+1, k+1)) = A028326(n, k) for any n >= 0 and k = 0..n.
A112765(T(n+1, k+1)) = A007318(n, k) for any n > 0 and k = 0..n.
(End)