A317650 The n-th term is the smallest integer > 1 that is congruent to +1 or -1 modulo k for all 2 <= k <= n.
3, 5, 5, 11, 11, 29, 41, 71, 71, 881, 1079, 10009, 10009, 32759, 82081, 636481, 636481, 2162161, 2162161, 2162161, 2162161, 39412801, 39412801, 39412801, 39412801, 1074427199, 1074427199, 15362146799, 15362146799, 109271408401, 482955026399, 482955026399
Offset: 2
Keywords
Programs
-
Mathematica
Rest@ Nest[Function[a, Append[a, Block[{k = a[[-1]]}, While[! AllTrue[Table[Or[# == 1, # == m - 1] &@ Mod[k, m], {m, Length@ a + 1}], # &], k++]; k]]], {2}, 16] (* Michael De Vlieger, Aug 02 2018 *)
-
PARI
ok(n,m)={for(i=2, n, my(r=m%i); if(r<>1&&r<>i-1, return(0))); 1} a(n)={my(m=oo, p=primes(primepi(n))); p=vector(#p, i, p[i]^logint(n, p[i])); for(k=0, 2^#p-1, my(t=2+lift(-2+chinese(vector(#p, i, Mod(if(bittest(k, i-1), -1, 1), p[i]))))); if(t
Andrew Howroyd, Aug 02 2018
Extensions
a(21)-a(32) from Andrew Howroyd, Aug 02 2018