A317670 Numbers k such that sigma_0(k-1) + sigma_0(k) + sigma_0(k+1) = 10, where sigma_0(k) = A000005(k).
7, 12, 14, 18, 22, 38, 58, 158, 178, 382, 502, 542, 718, 878, 1202, 1318, 1382, 1438, 1622, 1822, 2018, 2558, 2578, 2858, 2902, 3062, 3118, 3778, 4282, 4358, 4442, 4678, 4702, 5078, 5098, 5582, 5638, 5702, 5938, 6338, 6638, 6662, 6718, 6998, 7418, 8222, 8782, 8818, 9182, 9662, 9902
Offset: 1
Keywords
Examples
For a(3)=14, sigma_0(13)=2, sigma_0(14)=4, and sigma_0(15)=4, hence sigma_0(a(3)-1) + sigma_0(a(3)) + sigma_0(a(3)+1) = 10.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A000005.
Programs
-
Maple
Res:= 7,12,14,18: count:= 4: p:= 9: while count < 100 do p:= nextprime(p); n:= 2*p; if n mod 3 = 1 then v:= isprime(n+1) and isprime((n-1)/3) else v:= isprime(n-1) and isprime((n+1)/3) fi; if v then count:= count+1; Res:= Res, n fi od: Res; # Robert Israel, Aug 27 2018
-
Mathematica
Select[Partition[Range[10^4], 3, 1], Total@ DivisorSigma[0, #] == 10 &][[All, 2]] (* Michael De Vlieger, Aug 05 2018 *)
-
PARI
isok(n) = numdiv(n-1) + numdiv(n) + numdiv(n+1) == 10; \\ Michel Marcus, Aug 04 2018
Comments