A317677 Fixed point of a shifted hypertree transform.
1, 1, 4, 32, 402, 7038, 160114, 4522578, 153640590, 6132546770, 282517271694, 14812447505646, 873934551644074, 57486823088667270, 4183353479821220130, 334572221351085006242, 29242220614539638127294, 2779426070382982579163202, 286058737295150226682469518
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..305
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1/k, add( a(j)*b(n-j, k)*binomial(n-1, j-1)*k, j=1..n)) end: a:= n-> b(n-1, n): seq(a(n), n=1..20); # Alois P. Heinz, Aug 21 2019
-
Mathematica
numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn]; a[n_]:=a[n]=Sum[n^(Length[ptn]-1)*numSetPtnsOfType[ptn]*Product[a[s],{s,ptn}],{ptn,IntegerPartitions[n-1]}]; Array[a,20] (* Second program: *) b[n_, k_] := b[n, k] = If[n == 0, 1/k, Sum[ a[j]*b[n - j, k]*Binomial[n - 1, j - 1]*k, {j, 1, n}]]; a[n_] := b[n - 1, n]; Array[a, 20] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Comments