cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383758 Least integer k for which sigma(k - x) + sigma(k + x) = n*k has at least one solution.

Original entry on oeis.org

1, 2, 6, 24, 93, 1952, 14412, 361881, 61824672
Offset: 2

Views

Author

Jean-Marc Rebert, May 09 2025

Keywords

Comments

The corresponding x are : 0, 0, 0, 0, 87, 1828, 13308, 358839, ...
a(10) <= 61824672 via sigma(61824672 - 60697728) + sigma(61824672 + 60697728) = 10*61824672. - Michel Marcus, May 20 2025
a(11) <= 43293761280 via sigma(43293761280 - 40511560320) + sigma(43293761280 + 40511560320) == 11*43293761280. - Michel Marcus, May 25 2025
Note that for n=2,3,4,5,8,and 9, we have k+x = A383920(n). - Michel Marcus, Jun 09 2025
From David A. Corneth, Jun 13 2025: (Start)
a(10) = 61824672. We must have sigma(k-x) >= 5*(k-x) or sigma(k+x) >= 5 * (k+x).
The numbers <= 2*61824672 that have this property are 122522400. It has been checked that if k + x = 122522400 then k must be 61824672 to get the smallest such k. (End)

Examples

			a(4) = 6 because the equation sigma(6-x) + sigma(6+x) = 4*6 has the solution x = 0 and no smaller number possesses this property. See A000396, A383268, and A383269.
a(5) = 24 because the equation sigma(24-x) + sigma(24+x) = 5*24 has the solution x = 0. This is verified as follows: sigma(24-0) + sigma(24+0) = sigma(24) + sigma(24) = 60 + 60 = 120 = 5*24. Moreover, no smaller number possesses this property. See A141643.
a(6) = 93 because the equation sigma(93 - x) + sigma(93 + x) = 6 * 93 has the solution x = 87: sigma(93 - 87) + sigma(93 + 87) = sigma(6) + sigma(180) = 12 + 546 = 6*93. Moreover, no smaller number possesses this property.
		

Crossrefs

Programs

  • PARI
    isok(k,n) = forstep(x=k-1, 0, -1, if (sigma(k - x) + sigma(k + x) == n*k, return(1)));
    a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, May 10 2025

Formula

a(n) <= A317681(n).

Extensions

a(10) from Michel Marcus and David A. Corneth, Jun 13 2025

A383920 Smallest m such that sigma(m) >= n*m/2.

Original entry on oeis.org

1, 2, 6, 24, 120, 1680, 27720, 720720, 122522400, 41902660800, 130429015516800, 3066842656354276800, 1970992304700453905270400, 168721307030313765796546413936000, 1897544233056092162003806758651798777216000, 8201519488959040182625924708238885435575055666675808000
Offset: 2

Views

Author

Michel Marcus, May 15 2025

Keywords

Comments

For n>= 11, terms were computed with 2nd PARI program using the T. D. Noe algorithm.

Examples

			From _Michael De Vlieger_, May 22 2025: (Start)
Table of a(n), n = 2..10, showing prime power decomposition:
                                         Prime power
                                         factor exponent
                                             111
 n     m = a(n)    sigma(m)      n*m/2   2357137
------------------------------------------------
 2           1           1           1   0
 3           2           3           3   1
 4           6          12          12   11
 5          24          60          60   31
 6         120         360         360   311
 7        1680        5952        5880   4111
 8       27720      112320      110880   32111
 9      720720     3249792     3243240   421111
10   122522400   614210688   612612000   5221111 (End)
		

Crossrefs

Cf. A004490. Subsequence of A004394.

Programs

  • Mathematica
    (* First, load function f from A025487, then *)
    nn = 12; s = Union@ Flatten@ f[nn + 4]; m = Length[s];
    Monitor[Reap[Do[k = 1; While[And[DivisorSigma[1, #] < n*#/2 &[ s[[k]] ], k < m], k++]; If[k == m, Break[], Sow[s[[k]] ] ], {n, 2, nn}] ][[-1, 1]], n] (* Michael De Vlieger, May 21 2025 *)
  • PARI
    a(n) = my(k=1); while (sigma(k) < k*n/2, k++); k;
    
  • PARI
    ab(x) = sigma(x)/x;
    findpos(vca, val) = for (i=1, #vca -1, if ((sigma(vca[i])/vca[i] < val) && (sigma(vca[i+1])/vca[i+1] > val), return(i)););
    a(n) = if (n==1, return(0)); if (n==2, return(1)); my(val = n/2, vca = readvec("c:/gp/bfiles/b004490.txt"), vsa = readvec("c:/gp/bfiles/b004394.txt"), wc = select(x->(ab(x) == val), vca)); if (#wc, return(wc[1])); my(ipos = findpos(vca, val), c1 = vca[ipos], c2 = vca[ipos+1], ws = select(x->((x>c1) && (x<=c2)), vsa)); for (i=1, #ws, if (ab(ws[i]) >= val, return(ws[i])););
Showing 1-2 of 2 results.