A317683 Number of partitions of n into a prime and two distinct positive squares.
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 2, 2, 1, 2, 1, 2, 1, 3, 2, 3, 1, 1, 3, 4, 2, 3, 3, 3, 3, 3, 0, 6, 3, 1, 5, 3, 2, 6, 4, 4, 3, 4, 4, 7, 2, 3, 4, 5, 4, 6, 4, 5, 7, 6, 2, 7, 3, 2, 9, 6, 3, 7, 5, 6, 6, 7, 6, 9, 4, 4, 5, 9, 5, 9, 5, 4
Offset: 0
Examples
a(12)=2 counts 12 = 7 +1^2 +2^2 = 2 + 1^2 +3^2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..20000
Programs
-
Maple
A317683 := proc(n) a := 0 ; p := 2; while p <= n do a := a+A025441(n-p); p := nextprime(p) ; end do: a ; end proc:
-
Mathematica
p2sQ[n_]:=Length[Union[n]]==3&&Count[n,?(IntegerQ[Sqrt[#]]&)]==2&&Count[ n,?(PrimeQ[#]&)]==1; Table[Count[IntegerPartitions[n,{3}],?p2sQ],{n,0,80}] (* _Harvey P. Dale, Sep 21 2019 *)
Formula
a(n) = Sum_{primes p} A025441(n-p).
Comments