cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317707 Number of powerful rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 13, 22, 29, 46, 57, 94, 115, 180, 230, 349, 435, 671, 830, 1245, 1572, 2320, 2894, 4287, 5328, 7773, 9752, 14066, 17547, 25328, 31515, 45010, 56289, 79805, 99467, 140778, 175215, 246278, 307273, 429421, 534774, 745776, 927776, 1287038
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

An unlabeled rooted tree is powerful if either it is a single node or a single node with a single powerful tree as a branch, or if the branches of the root all appear with multiplicities greater than 1 and are themselves powerful trees.

Examples

			The a(7) = 11 powerful rooted trees:
  ((((((o))))))
  (((((oo)))))
  ((((ooo))))
  ((((o)(o))))
  (((oooo)))
  ((ooooo))
  (((o))((o)))
  ((oo)(oo))
  ((o)(o)(o))
  (oo(o)(o))
  (oooooo)
		

Crossrefs

Programs

  • Maple
    h:= proc(n, k, t) option remember; `if`(k=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, k-j, t+1), j=2..k)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*h(a(i), j, 0), j=0..n/i)))
        end:
    a:= proc(n) option remember; `if`(n<2, n, b(n-1$2)+a(n-1)) end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 31 2018
  • Mathematica
    purt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Or[Length[#]==1,Min@@Length/@Split[#]>1]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[purt[n]],{n,10}]
    (* Second program: *)
    h[n_, k_, t_] := h[n, k, t] = If[k == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, k - j, t + 1], {j, 2, k}]]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]* h[a[i], j, 0], {j, 0, n/i}]]];
    a[n_] := a[n] = If[n < 2, n, b[n - 1, n - 1] + a[n - 1]];
    Array[a, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Extensions

a(27)-a(45) from Alois P. Heinz, Aug 31 2018