A317707 Number of powerful rooted trees with n nodes.
1, 1, 2, 3, 5, 6, 11, 13, 22, 29, 46, 57, 94, 115, 180, 230, 349, 435, 671, 830, 1245, 1572, 2320, 2894, 4287, 5328, 7773, 9752, 14066, 17547, 25328, 31515, 45010, 56289, 79805, 99467, 140778, 175215, 246278, 307273, 429421, 534774, 745776, 927776, 1287038
Offset: 1
Keywords
Examples
The a(7) = 11 powerful rooted trees: ((((((o)))))) (((((oo))))) ((((ooo)))) ((((o)(o)))) (((oooo))) ((ooooo)) (((o))((o))) ((oo)(oo)) ((o)(o)(o)) (oo(o)(o)) (oooooo)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..8000
Crossrefs
Programs
-
Maple
h:= proc(n, k, t) option remember; `if`(k=0, binomial(n+t, t), `if`(n=0, 0, add(h(n-1, k-j, t+1), j=2..k))) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*h(a(i), j, 0), j=0..n/i))) end: a:= proc(n) option remember; `if`(n<2, n, b(n-1$2)+a(n-1)) end: seq(a(n), n=1..50); # Alois P. Heinz, Aug 31 2018
-
Mathematica
purt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Or[Length[#]==1,Min@@Length/@Split[#]>1]&],{ptn,IntegerPartitions[n-1]}]]; Table[Length[purt[n]],{n,10}] (* Second program: *) h[n_, k_, t_] := h[n, k, t] = If[k == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, k - j, t + 1], {j, 2, k}]]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]* h[a[i], j, 0], {j, 0, n/i}]]]; a[n_] := a[n] = If[n < 2, n, b[n - 1, n - 1] + a[n - 1]]; Array[a, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Extensions
a(27)-a(45) from Alois P. Heinz, Aug 31 2018
Comments