cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A317777 Numbers whose digital sums in bases 2, 3, 4, and 5 are all equal.

Original entry on oeis.org

1, 23162843828305, 5722224662500629, 25185954575304707081301, 407805072367801818857674005, 1705412607407578552438012746487125, 1705412607426764386750185803694405, 1705412607426764386750185803695125, 1705412607426764386750186877112645, 1705412607431411795338502226662661
Offset: 1

Views

Author

Giovanni Resta, Aug 06 2018

Keywords

Comments

Comment from Max Alekseyev, Dec 11 2024 (Start)
The beginning of the sequence suggests that the terms may be rather sparse.
However, as terms become larger, they tend to appear in unexpected constellations such as:
89675268900935540640454882129695060
89675268900935540640454882129695061
89675268900935540640454933652788500
89675268900935540640454933652788501
89675273848747799396737823490250005
or
113343080811409868866589092414267671876
113343080811409868866589092414267671877
113343080811409868867743138448975156500
113343080811409868867743138448975156501
113343080811409868867760032719746187600
113343080811409868867760032719746187601
113343080811409868867760239410949735765
113343080811409868867761158326773437508
113343080811409868867761158326773437509
I can explain when two terms differ by 1, where the first one happens to end with a digit < b-1 for each base b in {2,3,4,5}, but the above constellations are a total mystery.
(End)

Examples

			23162843828305 in bases 2, 3, 4, and 5 is equal to 101010001000100000101000101000001000001010001, 10001000100100102010101011001, 11101010011011001001101, and 11014000001010001210, respectively. The sum of the digits is 13 in all four cases.
		

Crossrefs

Subsequence of A037301 and A135122.
Cf. A317725.

Extensions

Terms a(5) onward from Max Alekseyev, Sep 09 2023

A335051 a(n) is the smallest decimal number > 1 such that when it is written in all bases from base 2 to base n those numbers all contain both 0 and 1.

Original entry on oeis.org

2, 9, 19, 28, 145, 384, 1128, 2601, 2601, 101256, 103824, 382010, 572101, 971400, 1773017, 1773017, 22873201, 64041048, 64041048, 1193875201, 2496140640, 10729882801, 21660922801, 120068616277, 333679563001, 427313653201, 427313653201, 10436523921264, 10868368953601
Offset: 2

Views

Author

Keywords

Comments

The sequence is infinite since 1 + lcm(2,...,n)^2 is always a candidate for a(n). - Giovanni Resta, May 24 2020

Examples

			a(3) = 9 as 9_2 = 1001 and 9_3 = 100, both of which contain a 0 and 1.
a(6) = 145 as 145_2 = 10010001, 145_3 = 12101, 145_4 = 2101, 145_5 = 1040, 145_6 = 401, all of which contain a 0 and 1.
a(9) = 2601 as 2601_2 = 101000101001, 2601_3 = 10120100, 2601_4 = 220221, 2601_5 = 40401, 2602_6 = 20013, 2601_7 = 10404, 2601_8 = 5051, 2601_9 = 3510, all of which contain a 0 and 1. Note that, as 2601 also contains a 0 and 1, a(10) = 2601.
a(16) = 1773017 as 1773017_2 = 110110000110111011001, 1773017_3 = 10100002010022, 1773017_4 = 12300313121, 1773017_5 = 423214032, 1773017_6 = 102000225, 1773017_7 = 21033101, 1773017_8 = 6606731, 1773017_9 = 3302108, 1773017_10 = 1773017, 1773017_11 = 1001104, 1773017_12 = 716075, 1773017_13 = 4A102C, 1773017_14 = 342201, 1773017_15 = 250512, 1773017_16 = 1B0DD9, all of which contain a 0 and 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k=2}, While[ AnyTrue[ Range[n, 2, -1], ! SubsetQ[ IntegerDigits[k, #], {0, 1}] &], k++]; k]; a /@ Range[2, 13] (* Giovanni Resta, May 24 2020 *)
  • Python
    from numba import njit
    @njit
    def hasdigits01(n, b):
        has0, has1 = False, False
        while n >= b:
          n, r = divmod(n, b)
          if r == 0: has0 = True
          if r == 1: has1 = True
          if has0 and has1: return True
        return has0 and (has1 or n==1)
    @njit
    def a(n, start=2):
      k = start
      while True:
        for b in range(n, 1, -1):
          if not hasdigits01(k, b): break
        else: return k
        k += 1
    anm1 = 2
    for n in range(2, 21):
      an = a(n, start=anm1)
      print(an, end=", ")
      anm1 = an # Michael S. Branicky, Feb 09 2021

Extensions

a(29)-a(30) from Giovanni Resta, May 24 2020

A335066 Decimal numbers such that when they are written in all bases from 2 to 10 those numbers all share a common digit (the digit 0 or 1).

Original entry on oeis.org

1, 81, 91, 109, 127, 360, 361, 417, 504, 540, 541, 631, 661, 720, 781, 841, 918, 981, 991, 1008, 1009, 1039, 1080, 1081, 1088, 1089, 1090, 1091, 1093, 1099, 1105, 1111, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1128, 1134, 1135, 1136, 1137, 1138, 1139
Offset: 1

Views

Author

Keywords

Comments

As base 2 is included the only possible common digit between all the bases is either a 0 or 1.

Examples

			1 is a term as 1 written in all bases is 1.
81 is a term as 81_2 = 1010001, 81_3 = 10000, 81_4 = 1101, 81_5 = 311, 81_6 = 213, 81_7 = 144, 81_8 121, 81_9 = 100, 81_10 = 81, all of which contain the digit 1.
360 is a term as 360_2 = 101101000, 360_3 = 111100, 360_4 = 11220, 360_5 = 2420, 360_6 = 1400, 360_7 = 1023, 360_8 = 550, 360_9 = 550, 360_10 = 360, all of which contain the digit 0.
		

Crossrefs

Programs

  • Python
    def hasdigits01(n, b):
        has0, has1 = False, False
        while n >= b:
            n, r = divmod(n, b)
            if r == 0: has0 = True
            if r == 1: has1 = True
            if has0 and has1: return (True, True)
        return (has0, has1 or n==1)
    def ok(n):
        all0, all1 = True, True
        for b in range(10, 1, -1):
            has0, has1 = hasdigits01(n, b)
            all0 &= has0; all1 &= has1
            if not all0 and not all1: return False
        return all0 or all1
    print([k for k in range(1140) if ok(k)]) # Michael S. Branicky, May 23 2022
Showing 1-3 of 3 results.