cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317756 Number of distinct primes obtained by cyclically shifting the decimal digits of the n-th prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 3, 2, 3, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 2, 2, 2, 3, 1, 1, 1, 2, 2, 3, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Keywords

Comments

First occurrence of k, k=1,2,3,...: 2, 13, 113, 1193, 11939, 193939, 17773937, 119139133, ..., . A247153.
a(n) is equal to the row index of prime(n) in A317716.
Every positive integer occurs in this sequence if and only if A247153(i) != 0 for every i >= 1.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{len = IntegerLength@n, s = {n}}, Do[AppendTo[s, FromDigits@RotateRight@IntegerDigits@s[[k - 1]]], {k, 2, len}]; DeleteDuplicates@Select[s, PrimeQ]] (* after Michael De Vlieger in A262988 *); Array[Length@f@Prime@# &, 105] (* Robert G. Wilson v, Aug 06 2018 *)
    Table[Count[Union[FromDigits/@Table[RotateRight[IntegerDigits[p],n],{n,IntegerLength[p]}]],?PrimeQ],{p,Prime[Range[120]]}] (* _Harvey P. Dale, Jan 18 2025 *)
  • PARI
    eva(n) = subst(Pol(n), x, 10)
    rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
    count_primes(n) = my(d=digits(n), i=0); while(1, if(ispseudoprime(eva(d)), i++); d=rot(d); if(d==digits(n), return(i)))
    a(n) = my(p=prime(n)); count_primes(p) \\ Felix Fröhlich, Aug 06 2018

Formula

a(n) = A262988(A000040(n)).