A317775 Number of strict multiset partitions of strongly normal multisets of size n, where a multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.
1, 3, 10, 36, 136, 596, 2656, 13187, 68226, 381572, 2233091, 13940407, 90981030, 626911429, 4509031955, 33987610040, 266668955183, 2180991690286, 18512572760155, 163103174973092, 1487228204311039, 14027782824491946, 136585814043190619, 1371822048393658001, 14190528438090988629
Offset: 1
Keywords
Examples
The a(3) = 10 strict multiset partitions: {{1,1,1}}, {{1},{1,1}}, {{1,1,2}}, {{1},{1,2}}, {{2},{1,1}}, {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1},{2},{3}}.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..50
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Length[Select[Join@@mps/@strnorm[n],UnsameQ@@#&]],{n,6}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1,-n)/prod(i=1, #v, i^v[i]*v[i]!)} seq(n)={my(s); for(k=1, n, forpart(p=k, s+=(-1)^(k+#p)*D(p,n))); s[n]+=1; s/2} \\ Andrew Howroyd, Dec 30 2020
Extensions
Terms a(10) and beyond from Andrew Howroyd, Dec 30 2020