cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317775 Number of strict multiset partitions of strongly normal multisets of size n, where a multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

Original entry on oeis.org

1, 3, 10, 36, 136, 596, 2656, 13187, 68226, 381572, 2233091, 13940407, 90981030, 626911429, 4509031955, 33987610040, 266668955183, 2180991690286, 18512572760155, 163103174973092, 1487228204311039, 14027782824491946, 136585814043190619, 1371822048393658001, 14190528438090988629
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Examples

			The a(3) = 10 strict multiset partitions:
  {{1,1,1}}, {{1},{1,1}},
  {{1,1,2}}, {{1},{1,2}}, {{2},{1,1}},
  {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1},{2},{3}}.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[Join@@mps/@strnorm[n],UnsameQ@@#&]],{n,6}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1,-n)/prod(i=1, #v, i^v[i]*v[i]!)}
    seq(n)={my(s); for(k=1, n, forpart(p=k, s+=(-1)^(k+#p)*D(p,n))); s[n]+=1; s/2} \\ Andrew Howroyd, Dec 30 2020

Extensions

Terms a(10) and beyond from Andrew Howroyd, Dec 30 2020