A317794 Number of non-isomorphic set-systems on n vertices with no singletons.
1, 1, 2, 8, 180, 612032, 200253854316544, 263735716028826427534807159537664, 5609038300883759793482640992086670066760184863720423808367168537493504
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(3) = 8 set-systems: 0, {12}, {123}, {12}{13}, {12}{123}, {12}{13}{23}, {12}{13}{123}, {12}{13}{23}{123}.
Links
- Loïc Foissy, Hopf algebraic structures on hypergraphs and multi-complexes, arXiv:2304.00810 [math.CO], 2023.
- Peter H. van der Kamp, Hypergraphs and homogeneous Lotka-Volterra systems with linear Darboux polynomials, arXiv:2411.18264 [nlin.SI], 2024. See p. 4.
Crossrefs
Programs
-
Mathematica
sysnorm[{}] := {};sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]]; Table[Length[Union[sysnorm/@Select[Subsets[Select[Subsets[Range[n]],Length[#]>1&]],Or[Length[#]==0,Union@@#==Range[Max@@Union@@#]]&]]],{n,4}] (* second program *) Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Subsets[Range[n],{2,n}]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length]/n!,{prm,Permutations[Range[n]]}],{n,6}] (* Gus Wiseman, Dec 12 2018 *)
Formula
Extensions
More terms from Gus Wiseman, Dec 12 2018