cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317800 G.f. A(x) satisfies: Sum_{n>=1} ( A(x) - (-1)^n * A(-x) )^n * (-1)^n / n = 0.

Original entry on oeis.org

1, 1, 1, 4, 10, 33, 105, 354, 1214, 4206, 14846, 52750, 189516, 686745, 2506913, 9211226, 34036230, 126426446, 471769950, 1767460752, 6645539212, 25076120890, 94937019050, 360268374124, 1369645176012, 5226326126048, 20039843858208, 76654036799842, 290534140464144, 1123489897863753, 4582416833711249, 17212665701732282, 45565498032190230
Offset: 1

Views

Author

Paul D. Hanna, Aug 09 2018

Keywords

Comments

Odd terms occur at a(2^k - 1) and a(2^k - 2) for k > 1 and at a(1), while a(n) is even elsewhere (conjecture).
First negative term is a(37).

Examples

			G.f. A(x) = x + x^2 + x^3 + 4*x^4 + 10*x^5 + 33*x^6 + 105*x^7 + 354*x^8 + 1214*x^9 + 4206*x^10 + ...
Let the series bisections of g.f. A(x) be denoted by
C = (A(x) + A(-x))/2 = x^2 + 4*x^4 + 33*x^6 + 354*x^8 + 4206*x^10 + ...
S = (A(x) - A(-x))/2 = x + x^3 + 10*x^5 + 105*x^7 + 1214*x^9 + 14846*x^11 + ...
then from the definition we have
0 = (2*C) - (2*S)^2/2 + (2*C)^3/3 - (2*S)^4/4 + (2*C)^5/5 - (2*S)^6/6 + (2*C)^7/7 - (2*S)^8/8 + ...
thus  arctanh(2*C) + log(1 - 4*S^2)/2 = 0,
so that  (1 - 2*C)/(1 + 2*C) = 1 - 4*S^2.
RELATED SERIES.
A(A(x)) = x + 2*x^2 + 4*x^3 + 14*x^4 + 52*x^5 + 204*x^6 + 840*x^7 + 3574*x^8 + 15588*x^9 + 69332*x^10 + ... + A316363(n)*x^n + ...
where A(A(x)) = -x + 2 * Series_Reversion( x - x^2/(1 - 2*x^2) ).
		

Crossrefs

Cf. A316363.

Programs

  • PARI
    /* From: A(x) = S + S^2/(1 - 2*S^2) and A(x) = Series_Reversion(-A(-x)) */
    {a(n) = my(A=[1,1],S); for(i=1,n, S=(x*Ser(A) - subst(x*Ser(A),x,-x))/2; A=concat(Vec( S + S^2/(1 - 2*S^2) ),0); if(#A%2==1,A = (A + Vec( serreverse(subst(-x*Ser(A),x,-x)) ) )/2 ); );A[n]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(-A(-x)) = x.
(2a) Sum_{n>=1} ( A(x) - (-1)^n * A(-x) )^n * (-1)^n / n = 0.
(2b) A(A(x)) = B(x) such that Sum_{n>=1} ( x + (-1)^n * B(x) )^n / n = 0, where B(x) is the o.g.f. of A316363.
(3a) A(A(x)) = -x + 2 * Series_Reversion( x - x^2/(1 - 2*x^2) ).
(3b) A(A(x)) = x + 2 * Series_Reversion( x/sqrt(1 + 2*x^2) - x^2 )^2.
Let C = (A(x) + A(-x))/2 and S = (A(x) - A(-x))/2, then
(4a) arctanh(2*C) + log(1 - 4*S^2)/2 = 0,
(4b) 1 - 4*S^2 = (1 - 2*C)/(1 + 2*C),
(5a) S^2 = C/(1 + 2*C),
(5b) C = S^2/(1 - 2*S^2),
(6a) A(x) = S + S^2/(1 - 2*S^2),
(6b) A(x) = C + sqrt(C/(1 + 2*C)).
(7) 0 = (2*y + y^2 - y^3) - (2 - 2*y + y^2)*A(x) + (1 + y)*A(x)^2 + A(x)^3, where y = -A(-x) = Series_Reversion(A(x)).