cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A316363 O.g.f. A(x) satisfies: Sum_{n>=1} (x + (-1)^n*A(x))^n / n = 0.

Original entry on oeis.org

1, 2, 4, 14, 52, 204, 840, 3574, 15588, 69332, 313272, 1433964, 6635400, 30988312, 145871248, 691403686, 3296979524, 15805913476, 76135613784, 368304184900, 1788518253080, 8715477003688, 42605364060656, 208878870197436, 1026781984000680, 5059692979338824, 24989145569112880, 123676728224877464, 613295203581498768, 3046761116509464624
Offset: 1

Views

Author

Paul D. Hanna, Jul 03 2018

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 4*x^3 + 14*x^4 + 52*x^5 + 204*x^6 + 840*x^7 + 3574*x^8 + 15588*x^9 + 69332*x^10 + 313272*x^11 + 1433964*x^12 + ...
such that
0 = (x - A(x)) + (x + A(x))^2/2 + (x - A(x))^3/3 + (x + A(x))^4/4 + (x - A(x))^5/5 + (x + A(x))^6/6 + (x - A(x))^7/7 + (x + A(x))^8/8 + ...
thus arctanh(x - A(x)) - log(1 - (x + A(x))^2)/2 = 0
so that (1+x - A(x))/(1-x + A(x)) = 1 - (x + A(x))^2.
RELATED SERIES.
Series_Reversion(A(x)) = x - 2*x^2 + 4*x^3 - 14*x^4 + 52*x^5 - 204*x^6 + 840*x^7 - 3574*x^8 + ... + (-1)^(n-1)*a(n)*x^n + ...
Series_Reversion(x + A(x)) = 1/2*x - 1/4*x^2 - 1/8*x^4 - 1/16*x^6 - 1/32*x^8 - 1/64*x^10 - 1/128*x^12 - 1/256*x^14 + ... = x*(1 - x)*(2 + x)/(4 - 2*x^2); equivalently, Series_Reversion((x + A(x))/2) = x - x^2/(1 - 2*x^2).
Let F(x) be the g.f. of A317800, then A(x) = F(F(x)), where
F(x) = x + x^2 + x^3 + 4*x^4 + 10*x^5 + 33*x^6 + 105*x^7 + 354*x^8 + 1214*x^9 + 4206*x^10 + ... + A317800(n)*x^n + ...
		

Crossrefs

Cf. A317800.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = polcoeff(sum(m=1, #A, (x + (-1)^m*x*Ser(A))^m/m), #A)); A[n]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1a) 0 = Sum_{n>=1} (x + (-1)^n*A(x))^n / n,
(1b) 0 = arctanh(x - A(x)) - log(1 - (x + A(x))^2)/2,
(1c) 1 - (x + A(x))^2 = (1+x - A(x))/(1-x + A(x)).
(2a) A(x) = x + (x + A(x))^2/(2 - (x + A(x))^2).
(2b) 0 = (2*x + x^2 - x^3) - (2 - 2*x + x^2)*A(x) + (1+x)*A(x)^2 + A(x)^3.
(3) A(-A(-x)) = x.
(4a) A(x) = -x + 2 * Series_Reversion( x - x^2/(1 - 2*x^2) ).
(4b) A(x) = x + 2 * Series_Reversion( x/sqrt(1 + 2*x^2) - x^2 )^2.
(5) (A'(x) - 1)/(A'(x) + 1) = (x + A(x))*(1 - (x - A(x))^2) / (1 - (x + A(x))^2). - Paul D. Hanna, Apr 28 2022
a(n) ~ sqrt(r*(r*(1-r) + s*(1+s)) / (1 + r + 3*s)) / (sqrt(Pi) * n^(3/2) * r^n), where r = 0.1912388335306640951515262439910852999016888421453... and s = 0.444963791747610196027930141875385171928290741217... are real roots of the system of equations r^2*(-1 + r + s) = s*(-2 + s + s^2) + r*(2 + 2*s + s^2), 2*r*(1 + s) + s*(2 + 3*s) = 2 + r^2. - Vaclav Kotesovec, Jul 06 2018
Showing 1-1 of 1 results.