cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A317800 G.f. A(x) satisfies: Sum_{n>=1} ( A(x) - (-1)^n * A(-x) )^n * (-1)^n / n = 0.

Original entry on oeis.org

1, 1, 1, 4, 10, 33, 105, 354, 1214, 4206, 14846, 52750, 189516, 686745, 2506913, 9211226, 34036230, 126426446, 471769950, 1767460752, 6645539212, 25076120890, 94937019050, 360268374124, 1369645176012, 5226326126048, 20039843858208, 76654036799842, 290534140464144, 1123489897863753, 4582416833711249, 17212665701732282, 45565498032190230
Offset: 1

Views

Author

Paul D. Hanna, Aug 09 2018

Keywords

Comments

Odd terms occur at a(2^k - 1) and a(2^k - 2) for k > 1 and at a(1), while a(n) is even elsewhere (conjecture).
First negative term is a(37).

Examples

			G.f. A(x) = x + x^2 + x^3 + 4*x^4 + 10*x^5 + 33*x^6 + 105*x^7 + 354*x^8 + 1214*x^9 + 4206*x^10 + ...
Let the series bisections of g.f. A(x) be denoted by
C = (A(x) + A(-x))/2 = x^2 + 4*x^4 + 33*x^6 + 354*x^8 + 4206*x^10 + ...
S = (A(x) - A(-x))/2 = x + x^3 + 10*x^5 + 105*x^7 + 1214*x^9 + 14846*x^11 + ...
then from the definition we have
0 = (2*C) - (2*S)^2/2 + (2*C)^3/3 - (2*S)^4/4 + (2*C)^5/5 - (2*S)^6/6 + (2*C)^7/7 - (2*S)^8/8 + ...
thus  arctanh(2*C) + log(1 - 4*S^2)/2 = 0,
so that  (1 - 2*C)/(1 + 2*C) = 1 - 4*S^2.
RELATED SERIES.
A(A(x)) = x + 2*x^2 + 4*x^3 + 14*x^4 + 52*x^5 + 204*x^6 + 840*x^7 + 3574*x^8 + 15588*x^9 + 69332*x^10 + ... + A316363(n)*x^n + ...
where A(A(x)) = -x + 2 * Series_Reversion( x - x^2/(1 - 2*x^2) ).
		

Crossrefs

Cf. A316363.

Programs

  • PARI
    /* From: A(x) = S + S^2/(1 - 2*S^2) and A(x) = Series_Reversion(-A(-x)) */
    {a(n) = my(A=[1,1],S); for(i=1,n, S=(x*Ser(A) - subst(x*Ser(A),x,-x))/2; A=concat(Vec( S + S^2/(1 - 2*S^2) ),0); if(#A%2==1,A = (A + Vec( serreverse(subst(-x*Ser(A),x,-x)) ) )/2 ); );A[n]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(-A(-x)) = x.
(2a) Sum_{n>=1} ( A(x) - (-1)^n * A(-x) )^n * (-1)^n / n = 0.
(2b) A(A(x)) = B(x) such that Sum_{n>=1} ( x + (-1)^n * B(x) )^n / n = 0, where B(x) is the o.g.f. of A316363.
(3a) A(A(x)) = -x + 2 * Series_Reversion( x - x^2/(1 - 2*x^2) ).
(3b) A(A(x)) = x + 2 * Series_Reversion( x/sqrt(1 + 2*x^2) - x^2 )^2.
Let C = (A(x) + A(-x))/2 and S = (A(x) - A(-x))/2, then
(4a) arctanh(2*C) + log(1 - 4*S^2)/2 = 0,
(4b) 1 - 4*S^2 = (1 - 2*C)/(1 + 2*C),
(5a) S^2 = C/(1 + 2*C),
(5b) C = S^2/(1 - 2*S^2),
(6a) A(x) = S + S^2/(1 - 2*S^2),
(6b) A(x) = C + sqrt(C/(1 + 2*C)).
(7) 0 = (2*y + y^2 - y^3) - (2 - 2*y + y^2)*A(x) + (1 + y)*A(x)^2 + A(x)^3, where y = -A(-x) = Series_Reversion(A(x)).

A326564 O.g.f. A(x) satisfies: 0 = Sum_{n>=1} (b(n) - A(x))^n * (2*x)^n / n, where b(n) = 1 if n is odd or b(n) = 2 if n is even.

Original entry on oeis.org

1, 1, -2, 7, -26, 102, -420, 1787, -7794, 34666, -156636, 716982, -3317700, 15494156, -72935624, 345701843, -1648489762, 7902956738, -38067806892, 184152092450, -894259126540, 4357738501844, -21302682030328, 104439435098718, -513390992000340, 2529846489669412, -12494572784556440, 61838364112438732, -306647601790749384, 1523380558254732312, -7580755340625743760, 37783723921640161923
Offset: 0

Views

Author

Paul D. Hanna, Aug 28 2019

Keywords

Comments

a(n) is odd iff n = 2^k - 1 for k >= 0.
Signed version of A307413.

Examples

			O.g.f.: A(x) = 1 + x - 2*x^2 + 7*x^3 - 26*x^4 + 102*x^5 - 420*x^6 + 1787*x^7 - 7794*x^8 + 34666*x^9 - 156636*x^10 + 716982*x^11 - 3317700*x^12 + 15494156*x^13 - 72935624*x^14 + 345701843*x^15 - 1648489762*x^16 + ...
such that
0 = (1 - A(x))*(2*x) + (2 - A(x))^2*(2*x)^2/2 + (1 - A(x))^3*(2*x)^3/3 + (2 - A(x))^4*(2*x)^4/4 + (1 - A(x))^5*(2*x)^5/5 + (2 - A(x))^6*(2*x)^6/6 + (1 - A(x))^7*(2*x)^7/7 + (2 - A(x))^8*(2*x)^8/8 + (1 - A(x))^9*(2*x)^9/9 + ...
SPECIAL ARGUMENTS.
A( (3 - sqrt(17))/6 ) = 1/2.
A( (15 - sqrt(513))/40 ) = 1/3.
ODD TERMS.
The odd numbers occur at positions 2^n-1 and begin
[1, 1, 7, 1787, 345701843, 37783723921640161923, 1297226675901009799785880946943488094880739, 4359630365907394639251834255689265800511483817161978056491648421720696612963282942355107, ...].
		

Crossrefs

Programs

  • PARI
    /* By definition */
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0); A[#A] = polcoeff(sum(m=1, #A, ( ((m+1)%2) + 1 - Ser(A) )^m * (2*x)^m/m), #A)/2); A[n+1]}
    for(n=0, 32, print1(a(n), ", "))
    
  • PARI
    /* From: A(x) = 2 - (1/x) * Series_Reversion( x + x^2/(1 - 2*x^2) ) */
    {a(n) = my(A = 2 - (1/x)*serreverse(x + x^2/(1 - 2*x^2 +x*O(x^n)))); polcoeff(A,n)}
    for(n=0, 32, print1(a(n), ", "))

Formula

O.g.f. A = A(x) satisfies:
(1) 0 = Sum_{n>=1} (3 + (-1)^n - 2*A(x))^n * x^n / n.
(2) 0 = arctanh(2*x - 2*x*A) - log(1 - 4*x^2*(2 - A)^2)/2.
(3) 1 - 4*x^2*(2 - A)^2 = (1 + 2*x - 2*x*A) / (1 - 2*x + 2*x*A).
(4) A(x) = 1 + (A - 2)^2*x + 2*(A - 1)*(A - 2)^2*x^2.
(5) 0 = 2*(A - 1)*(A - 2)^2*x^2 + (A - 2)^2*x - (A - 1).
(6) x = ( sqrt( (A-2)^4 + 8*(A-1)^2*(A-2)^2 ) - (A-2)^2 ) / (4*(A-1)*(A-2)^2).
(7) A(x) = 2 - (1/x) * Series_Reversion( x + x^2/(1 - 2*x^2) ).

A353050 G.f. A(x) satisfies: 0 = Sum_{n>=1} (Lucas(n) - A(x))^n * x^n/n, where Lucas(n) = A000204(n).

Original entry on oeis.org

1, 2, 5, 298, 18949, 3962150, 1916564344, 2501114025582, 8336852053702202, 73027618049882652700, 1666798946804859125492899, 99738726494828465657124210156, 15634873312495144092899303952245929, 6430416165010536428917103922818349814504
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2022

Keywords

Comments

It is conjectured that this is an integer sequence.
This sequence is a special case of a more general conjecture: 0 = Sum_{n>=1} (L(n) - F(x))^n * x^n/n is satisfied by an integer series F(x) if exp( Sum_{n>=1} L(n) * x^n/n ) yields an integer series.

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 298*x^3 + 18949*x^4 + 3962150*x^5 + 1916564344*x^6 + 2501114025582*x^7 + 8336852053702202*x^8 + ...
where
0 = (1 - A(x))*x + (3 - A(x))^2*x^2/2 + (4 - A(x))^3*x^3/3 + (7 - A(x))^4*x^4/4 + (11 - A(x))^5*x^5/5 + (18 - A(x))^6*x^6/6 + (29 - A(x))^7*x^7/7 + (47 - A(x))^8*x^8/8 + (76 - A(x))^9*x^9/9 + ... + (Lucas(n) - A(x))^n*x^n/n + ...
Related series.
exp( Sum_{n>=1} A(x)^n * x^n/n ) = 1/(1 - x*A(x)) = 1 + x + 3*x^2 + 10*x^3 + 319*x^4 + 19601*x^5 + 4002282*x^6 + 1924629400*x^7 + 2504975492897*x^8 + 8341867813691252*x^9 + ...
exp( Sum_{n>=1} Lucas(n)^n * x^n/n ) = 1 + x + 5*x^2 + 26*x^3 + 634*x^4 + 32928*x^5 + 5704263*x^6 + 2470113915*x^7 + 2978904483553*x^8 + 9401949327631932*x^9 + ... + A156216(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {Lucas(n) = fibonacci(n-1) + fibonacci(n+1)}
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff( sum(m=1,#A, (Lucas(m) - Ser(A))^m*x^m/m), #A));A[n+1]}
    for(n=0,20,print1(a(n),", "))
Showing 1-3 of 3 results.