A317800 G.f. A(x) satisfies: Sum_{n>=1} ( A(x) - (-1)^n * A(-x) )^n * (-1)^n / n = 0.
1, 1, 1, 4, 10, 33, 105, 354, 1214, 4206, 14846, 52750, 189516, 686745, 2506913, 9211226, 34036230, 126426446, 471769950, 1767460752, 6645539212, 25076120890, 94937019050, 360268374124, 1369645176012, 5226326126048, 20039843858208, 76654036799842, 290534140464144, 1123489897863753, 4582416833711249, 17212665701732282, 45565498032190230
Offset: 1
Keywords
Examples
G.f. A(x) = x + x^2 + x^3 + 4*x^4 + 10*x^5 + 33*x^6 + 105*x^7 + 354*x^8 + 1214*x^9 + 4206*x^10 + ... Let the series bisections of g.f. A(x) be denoted by C = (A(x) + A(-x))/2 = x^2 + 4*x^4 + 33*x^6 + 354*x^8 + 4206*x^10 + ... S = (A(x) - A(-x))/2 = x + x^3 + 10*x^5 + 105*x^7 + 1214*x^9 + 14846*x^11 + ... then from the definition we have 0 = (2*C) - (2*S)^2/2 + (2*C)^3/3 - (2*S)^4/4 + (2*C)^5/5 - (2*S)^6/6 + (2*C)^7/7 - (2*S)^8/8 + ... thus arctanh(2*C) + log(1 - 4*S^2)/2 = 0, so that (1 - 2*C)/(1 + 2*C) = 1 - 4*S^2. RELATED SERIES. A(A(x)) = x + 2*x^2 + 4*x^3 + 14*x^4 + 52*x^5 + 204*x^6 + 840*x^7 + 3574*x^8 + 15588*x^9 + 69332*x^10 + ... + A316363(n)*x^n + ... where A(A(x)) = -x + 2 * Series_Reversion( x - x^2/(1 - 2*x^2) ).
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..520
Crossrefs
Cf. A316363.
Programs
-
PARI
/* From: A(x) = S + S^2/(1 - 2*S^2) and A(x) = Series_Reversion(-A(-x)) */ {a(n) = my(A=[1,1],S); for(i=1,n, S=(x*Ser(A) - subst(x*Ser(A),x,-x))/2; A=concat(Vec( S + S^2/(1 - 2*S^2) ),0); if(#A%2==1,A = (A + Vec( serreverse(subst(-x*Ser(A),x,-x)) ) )/2 ); );A[n]} for(n=1,30, print1(a(n),", "))
Formula
G.f. A(x) satisfies:
(1) A(-A(-x)) = x.
(2a) Sum_{n>=1} ( A(x) - (-1)^n * A(-x) )^n * (-1)^n / n = 0.
(2b) A(A(x)) = B(x) such that Sum_{n>=1} ( x + (-1)^n * B(x) )^n / n = 0, where B(x) is the o.g.f. of A316363.
(3a) A(A(x)) = -x + 2 * Series_Reversion( x - x^2/(1 - 2*x^2) ).
(3b) A(A(x)) = x + 2 * Series_Reversion( x/sqrt(1 + 2*x^2) - x^2 )^2.
Let C = (A(x) + A(-x))/2 and S = (A(x) - A(-x))/2, then
(4a) arctanh(2*C) + log(1 - 4*S^2)/2 = 0,
(4b) 1 - 4*S^2 = (1 - 2*C)/(1 + 2*C),
(5a) S^2 = C/(1 + 2*C),
(5b) C = S^2/(1 - 2*S^2),
(6a) A(x) = S + S^2/(1 - 2*S^2),
(6b) A(x) = C + sqrt(C/(1 + 2*C)).
(7) 0 = (2*y + y^2 - y^3) - (2 - 2*y + y^2)*A(x) + (1 + y)*A(x)^2 + A(x)^3, where y = -A(-x) = Series_Reversion(A(x)).
Comments