A317833 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A078898 (the ordinal transform of A020639, the smallest prime factor of n).
1, 1, 1, 7, 1, 5, 1, 25, 7, 9, 1, 31, 1, 13, 5, 363, 1, 55, 1, 55, 7, 21, 1, 101, 7, 25, 33, 79, 1, 41, 1, 1335, 11, 33, 5, 305, 1, 37, 13, 177, 1, 59, 1, 127, 47, 45, 1, 1371, 7, 175, 17, 151, 1, 309, 7, 253, 19, 57, 1, 187, 1, 61, 67, 9923, 9, 95, 1, 199, 23, 113, 1, 927, 1, 73, 87, 223, 5, 113, 1, 2379, 715, 81, 1, 265, 11
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
lpf[n_] := If[n == 1, 1, FactorInteger[n][[1, 1]]]; b[_] = 1; A078898[n_] := A078898[n] = If[n == 0, 0, With[{t = lpf[n]}, b[t]++]]; f[n_] := f[n] = If[n == 1, 1, (1/2)(A078898[n] - Sum[If[1 < d < n, f[d]*f[n/d], 0], {d, Divisors[n]}])] a[n_] := Numerator[f[n]]; Array[a, 100] (* Jean-François Alcover, Dec 19 2021 *)
-
PARI
up_to = 16384; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639 v078898 = ordinal_transform(vector(up_to,n,A020639(n))); A078898(n) = v078898[n]; A317833aux(n) = if(1==n,n,(A078898(n)-sumdiv(n,d,if((d>1)&&(d
A317833aux(d)*A317833aux(n/d),0)))/2); A317833(n) = numerator(A317833aux(n));
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A078898(n) - Sum_{d|n, d>1, d 1.
Comments