cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317833 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A078898 (the ordinal transform of A020639, the smallest prime factor of n).

Original entry on oeis.org

1, 1, 1, 7, 1, 5, 1, 25, 7, 9, 1, 31, 1, 13, 5, 363, 1, 55, 1, 55, 7, 21, 1, 101, 7, 25, 33, 79, 1, 41, 1, 1335, 11, 33, 5, 305, 1, 37, 13, 177, 1, 59, 1, 127, 47, 45, 1, 1371, 7, 175, 17, 151, 1, 309, 7, 253, 19, 57, 1, 187, 1, 61, 67, 9923, 9, 95, 1, 199, 23, 113, 1, 927, 1, 73, 87, 223, 5, 113, 1, 2379, 715, 81, 1, 265, 11
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2018

Keywords

Comments

The first negative term is a(840) = -445.

Crossrefs

Programs

  • Mathematica
    lpf[n_] := If[n == 1, 1, FactorInteger[n][[1, 1]]];
    b[_] = 1;
    A078898[n_] := A078898[n] = If[n == 0, 0, With[{t = lpf[n]}, b[t]++]];
    f[n_] := f[n] = If[n == 1, 1, (1/2)(A078898[n] - Sum[If[1 < d < n, f[d]*f[n/d], 0], {d, Divisors[n]}])]
    a[n_] := Numerator[f[n]];
    Array[a, 100] (* Jean-François Alcover, Dec 19 2021 *)
  • PARI
    up_to = 16384;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A317833aux(n) = if(1==n,n,(A078898(n)-sumdiv(n,d,if((d>1)&&(dA317833aux(d)*A317833aux(n/d),0)))/2);
    A317833(n) = numerator(A317833aux(n));

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A078898(n) - Sum_{d|n, d>1, d 1.