cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317848 Multiplicative with a(p^e) = binomial(2*e, e).

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 20, 6, 4, 2, 12, 2, 4, 4, 70, 2, 12, 2, 12, 4, 4, 2, 40, 6, 4, 20, 12, 2, 8, 2, 252, 4, 4, 4, 36, 2, 4, 4, 40, 2, 8, 2, 12, 12, 4, 2, 140, 6, 12, 4, 12, 2, 40, 4, 40, 4, 4, 2, 24, 2, 4, 12, 924, 4, 8, 2, 12, 4, 8, 2, 120, 2, 4, 12, 12, 4, 8, 2, 140
Offset: 1

Views

Author

Andrew Howroyd, Aug 08 2018

Keywords

Comments

The Dirichlet convolution square of this sequence is A165825.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Binomial[2*e, e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
  • PARI
    a(n)={my(v=factor(n)[,2]); prod(i=1, #v, binomial(2*v[i], v[i]))}
    
  • PARI
    \\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u).
    DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
    				
  • PARI
    A317848(n) = factorback(apply(e -> binomial(e+e,e),factor(n)[,2])); \\ Antti Karttunen, Sep 17 2018

Formula

A037445(n) = A006519(a(n)).
A046643(n) = numerator(a(n)/A165825(n)) = A000265(a(n)).
A046644(n) = denominator(a(n)/A165825(n)) = A165825(n)/A037445(n).
A299149(n) = numerator(n*a(n)/A165825(n)) = A000265(n*a(n)).
A299150(n) = denominator(n*a(n)/A165825(n)) = A165825(n)/(A037445(n) * A006519(n)).