A317848 Multiplicative with a(p^e) = binomial(2*e, e).
1, 2, 2, 6, 2, 4, 2, 20, 6, 4, 2, 12, 2, 4, 4, 70, 2, 12, 2, 12, 4, 4, 2, 40, 6, 4, 20, 12, 2, 8, 2, 252, 4, 4, 4, 36, 2, 4, 4, 40, 2, 8, 2, 12, 12, 4, 2, 140, 6, 12, 4, 12, 2, 40, 4, 40, 4, 4, 2, 24, 2, 4, 12, 924, 4, 8, 2, 12, 4, 8, 2, 120, 2, 4, 12, 12, 4, 8, 2, 140
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
f[p_, e_] := Binomial[2*e, e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
-
PARI
a(n)={my(v=factor(n)[,2]); prod(i=1, #v, binomial(2*v[i], v[i]))}
-
PARI
\\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u). DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
-
PARI
A317848(n) = factorback(apply(e -> binomial(e+e,e),factor(n)[,2])); \\ Antti Karttunen, Sep 17 2018
Comments