A318056 Let b(1) = b(2) = 1; for n >= 3, b(n) = n - b(t(n)) - b(n-t(n-1)) where t = A004001. a(n) = 2*b(n) - n.
1, 0, -1, 0, 1, 0, 1, 0, -3, -2, -3, -2, -1, 0, -1, 0, 5, 4, 5, 4, 5, 2, 1, 2, 3, 4, 3, 0, 1, 0, 1, 0, -11, -10, -11, -10, -11, -10, -7, -6, -7, -6, -9, -10, -9, -8, -7, -8, -3, -4, -3, -2, -1, -2, -5, -4, -5, -4, -1, 0, -1, 0, -1, 0, 21, 20, 21, 20, 21, 20, 21, 16, 15, 16, 15, 16, 19, 20, 19, 20
Offset: 1
Links
- Altug Alkan, Table of n, a(n) for n = 1..32768
- Altug Alkan, Line plot of a(n) for n <= 2^17
Programs
-
Maple
t:= proc(n) option remember; `if`(n<3, 1, t(t(n-1)) +t(n-t(n-1))) end: b:= proc(n) option remember; `if`(n<3, 1, n -b(t(n)) -b(n-t(n-1))) end: seq(2*b(n)-n, n=1..100); # after Alois P. Heinz at A317686
-
Mathematica
t[1]=t[2]=1; t[n_] := t[n] = t[t[n-1]] + t[n - t[n-1]]; b[1]=b[2]=1; b[n_] := b[n] = n - b[t[n]] - b[n - t[n-1]]; a[n_] := 2*b[n] - n; Array[a, 95] (* after Giovanni Resta at A317854 *)
-
PARI
t=vector(99); t[1]=t[2]=1; for(n=3, #t, t[n] = t[n-t[n-1]]+t[t[n-1]]); b=vector(99); b[1]=b[2]=1; for(n=3, #b, b[n] = n-b[t[n]]-b[n-t[n-1]]);vector(99, k, 2*b[k]-k)
Comments